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Abstract 

The aim of the paper was to present a dedicated theoretical investigation into the thermal 

performance of a novel solar loop-heat-pipe façade based heat pump water heating system.  

This involved thermo-fluid analyses, computer numerical model development, the model 

running up, modelling result analyses and conclusion.  An energy balance network was 

established on each part and the whole range of the system to address the associated energy 

conversion and transfer processes.  On basis of this, a computer numerical model was 

developed and run up to predict the thermal performance of such a system at different system 

configurations, layouts and operational conditions.  It was suggested that the loop heat pipes 

could be filled with either water, R134a, R22 or R600a; of which R600a is the favorite 

working fluid owing to its relatively larger heat transfer capacity and positive pressure in 

operation.  Variations in the system configuration, i.e., glazing covers, heat exchangers, 

would lead to identifiable differences in the thermal performance of the system, represented 

by the thermal efficiency and COP.  Furthermore, impact of the external operational 

parameters, i.e., solar radiation and ambient air temperature, to the system's thermal 

performance was also investigated.  The research was based on an innovative loop-heat-pipe 

façade and came up with useful results reflecting the thermal performance of the combined 

system between the façade and heat pump.  This would help promote development and 

market penetration of such an innovative solar heating technology, and thus contribute to 

achieving the global targets in energy saving and carbon emission reduction.           
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Nomenclature  

Am effective module area (m2) μ dynamic viscosity (kg/m-s) 
Ac,r cross area of refrigerant flow (m2) ν viscosity (m2/s) 
Ahx,r 
Ahx,s 

cross area of refrigerant in heat exchanger (m2) 
surface area of the plate heat exchanger (m2) 

ρ 
σ 

density (kg/m3) 
Stefan- Boltzman constant 

Cp specific heat capacity (J/kg-K) τ visual transmittance 
D diameter (m) χ vapour quality 
g gravity acceleration (m/s2) Subscripts 
h convective heat transfer coefficient (W/m-K) a air 
hfg latent heat of vaporization (J/kg) abs absorption 
hr refrigerant heat transfer coefficient (W/m- K) c cover 
hr,l heat transfer coefficient of liquid refrigerant 

(W/m- K) 
c,c Condenser coil 

hR radiative heat transfer coefficient (W/m- K) c1 internal cover sheet 
H high (m); thermal enthalpies (J/kg) c2 external cover sheet 
K 
k 

thermal conductivity (W/m2- K) 
adiabatic compression index 

d 
e 

discharge 
evaportator 

l length (m) e,t evaporation thermal energy 
m mass flow rate (kg/s) f three-way fitting 
n mesh number; rotation speed (rpm) g glazing cover 
N 
Nin 

Number 
compressor power consumption (W) 

hp 
hp,e 

heat pipe 
heat pipe evaporator 

Nu 
Pr 

Nusselt number 
Prandtl number 

hp,in 
hp,o 

inner heat pipe 
outer heat pipe 

p pressure (pa) hx heat exchanger 
Q energy rate (W) l liquid 
R thermal resistance (K /W) L loss 
R0 universal gas constant (kJ/kmol- K) m mean 
Ra 
Re 

Rayleigh number 
Reynolds number 

p 
r 

heat pipe wall 
refrigerant 

t temperature (oC) s solid; isentropic 
U overall heat coefficient (W/m- K) s,tk secondary water tank 
W width (m) th thermal; theoretical 
Greek tk primary water tank 
α absorption ratio; thermal diffusivity (m2/s) tl transporting line 
β 
δ 
ε 

factor of expansion (K-1) 
thickness (m) 
Effectiveness (%); porosity 

tp 
u 
v 

two-phase flow region 
useful 
vapour; volumetric 
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η efficiency wi wick 
 

1. Introduction 

It has been well known that global energy demand is in the trend of continuous growth, and 

buildings are consuming one third of the total energy supply in developed countries and one 

fourth in developing countries [1].  Reducing energy demand and making good use of 

renewable energy are thought to be the major routes towards the low energy and sustainable 

future, in particular, for the building sector.   

 

Solar technologies have been well developed for many years and are regarded as the most 

feasible renewable solutions for the building application.  Solar thermal, as the most mature 

technology among all currently available solar technologies, is proven to have relatively 

higher solar conversion efficiency [2] - two to four times higher than that in solar 

photovoltaic (PV) systems [3].  Further, solar thermal, owing to the worldwide application 

and massive scale production, has a much shorter payback period compared to its lifetime. 

Over the past four decades, solar water heating systems have gained widespread applications 

in the building sector globally.  Most of the solar water heaters were made with flat-plat or 

heat pipes arrays installed on roofs for layout convenience.  This system has been identified 

with a number of problems that would prevent their promotions, e.g. the installation detracts 

the aesthetics of the building and requires the long run of water transportation.  

 

In recent years, many façade-based solar water heating systems have been developed and 

utilized in high-rise building projects, particularly in China.  In these systems, the solar 

collectors (or called 'absorbers') could be fixed to the south-facing balcony of each flat unit 

[4-6].  This layout can prevent the occupation of the roof space and shortens the distance of 

pipe runs, and thus enabling improvement of the building's aesthetic effect.  However, façade 

based solar heating systems face a series of challenges: (1) lower solar radiation compared to 

that on the tilt roof; (2) limited installation area; (3) limited space in kitchen or washroom that 

may restrict the safe installation of the water tank.  All these together may lead to inefficient 

operation of the system, particularly at high temperature condition.   

 

To overcome the above difficulties, solar heat pump water heating system has been proposed 

and studied by various researchers [7-11].  This concept could lower the temperature of the 

solar absorber by controlling evaporation temperature of the refrigerant, and thus improving 
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the solar efficiency of the system.  However, long run of the refrigerant pipes between the 

outer façade and inside kitchen or washroom may lead to significantly higher refrigerant flow 

resistance and consequently, power needed for operating the compressor would be increased.   

 

To further improve the performance of the solar water heating systems, a novel loop-heat-

pipe (LHP) façade based heat pump water heating system is thereby proposed.  The LHP is a 

two-phase heat-transfer measure with the working fluid circulating across the loop, and thus 

enabling remote, passive heat transfer at the enhanced capacity.  The LHP has been widely 

ultilized in thermal control of satellites, spacecrafts, electronics and cooling/heating systems 

[12-13].  Use of LHP for solar energy collection and transportation is the only recent 

development and still at the research stage.  Recent research indicated that LHPs used in the 

buildings' hot water systems could achieve the enhanced performance if the solar absorber 

and heat exchanger are adequately selected and coupled [14, 15].   

 

To understand the insights of the innovative LHP façade based heat pump water heating 

system, a theoretical investigation into the thermal performance of such a system will be 

carried out by the combined effort of thermo-fluid analyses, computer numerical model 

development, model running up, modelling result analyses and conclusion.  This research 

will help promote development and market penetration of such an innovative solar heating 

technology, and thus contribute to achieving the global targets in energy saving and carbon 

emission in the building sector.  

  

  

2. System descriptions 

The proposed system is schematically shown in Fig. 1, which can be clearly divided into two 

elements, i.e., outdoor and indoor parts.  The outdoor part is a modular package, which 

receives the solar irradiation and converts it into heat energy in the form of low-temperature 

vapour.  The indoor part consists of a number of components including heat pump 

compressor, secondary water tank with heat exchanger (heat pipe condenser and heat pump 

evaporator), expansion valve, primary water tank with embedded heat-exchanging coils (heat 

pump condenser) and the associated water piping connections, which is designed to gain the 

solar heat by condensation of the heat pipe vapour, upgrade heat level by heat pump and store 

this part of heat in the primary water tank for end users.   
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The outdoor part is a multi-layer façade structure comprising (1) a light weight reinforced 

polystyrene board acting as the replacement of the existing wall or outer decoration layer of 

the wall; (2) the parallel-laid capillary tubes made of internally wicked copper pipes, which 

evenly distribute the working fluid around the inner pipe wall via the wicks, and convert it 

into vapour upon receiving the solar irradiation casting on the pipes.  The tubes are embedded 

beneath the outer skin with the board by using prefabrication technique, thus enabling merge 

of the both elements; (3) a thin cooper sheet coated with selective absorption spectrum 

coating on the outer skin of the board, which acts as the heat absorber and conductor 

transferring solar heat into the capillary tubes; and (4) a high-solar-transmittance glass cover 

on the front of the module allowing transmission of the solar radiation into the module and 

preventing excessive heat loss from the façade surface to the ambient environment.    

 

The indoor part comprises a well-insulated vapour transporting line.  Due to the vapour 

buoyancy, it deliveries the heat from the outdoor vapour header to the indoor secondary water 

tank with exchanger where the vapour is condensed to a liquid at the same temperature.  At 

the outlet of the secondary water tank where condensed liquid is back to the outdoor part, a 

fluid reservoir is assembled to adjust the liquid mass participating in the heat transfer process 

by keeping appropriate liquid mass in fluid reservoir, and it also can stop the penetration of 

vapour through the pipe.  Thus, only the condensed liquid with appropriate mass can flow 

across and enter the liquid header via a liquid transport line, owing to the gravity caused by 

the height difference between the exchanger and the liquid header and the system operation 

pressure varied with the operation temperature.  When the solar energy strikes on the south-

facing collector surface over the high-solar-transmittance glass cover, the received solar heat 

converts the working fluid into vapour immediately.  Owing to the buoyancy effect of vapour, 

it will float along the inner space of pipes till the top-level in the vapour header and then flow 

through well-insulated vapour line into the heat exchanger, which is located inside the 

secondary water tank.  Within the exchanger, the vapour will be condensed into a liquid at the 

same temperature.  The condensed liquid will then flow through a fluid reservoir assembled 

on the liquid line to the liquid header affected by both the gravity and system operation 

pressure.  After that, this liquid will be evenly scattered to capillary pipes via the three-way 

feeding at the upper part of each wicked pipe, as showed in Fig. 2.   

 

In addition, there is a heat pump system connecting secondary water tank with primary water 

tank, the condenser of heat pump is set to be merged in primary water tank, the evaporator of 
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heat pump is combined with heat exchanger in secondary water tank, then heat pump can 

enhance the lower temperature water in secondary water tank to higher temperature water in 

primary water tank according to residents' detailed requirement.  Of course, there is feed 

water inlet and supply water outlet on the primary water tank so that hot water can be 

supplied to residents at city water pressure.  The thermodynamic cycle of the heat pump is 

shown on a T-S diagram in Fig. 3.  Sub-cooled refrigerant, flowing out of the condenser (at 

point 7), is first throttled in the capillary tube (through the Process 7-8), then enters the heat 

pump evaporator (at point 8).  In the evaporator, the refrigerant absorbs heat from the 

condensing heat exchanger and vaporizes gradually.  The refrigerant becomes slightly 

superheated at the evaporator output (point 2), and is compressed to a high temperature high 

pressure superheated gas at the outlet end of the compressor (point 3).  Then it discharges the 

energy in the condenser and becomes a sub-cooled liquid (the process 3-7). 

 

This innovative design allows the combination of solar water heating, LHP technologies, heat 

pump and heat absorbing pipes in facade, and truly realizes a building-integrated solar 

heating system with other merits of cost-effective, high efficiency and visually pleasant.  The 

highlights are respectively listed as followings:  

(1) The outdoor part is a modular flat unit and embedded into a lightweight board, which 

could act as a replacement of the current wall structure, or its external decoration layer.  This 

concept will create a building integrated solar water heating system with lower cost.   

(2) Loop heat pipes are two-phase heat-transfer devices that separate vapour and liquid flows 

and thus eliminate the entrainment friction between them, which is one of the major limits 

impacting on heat pipe heat transfer before.  These pipes are therefore able to transfer large 

amount of heat up to several meters long and keep water pipes from freezing during winter 

operation.   

(3) The secondary water tank is regarded as a temperature bumper, which leads to a gradual 

temperature variation in the heat exchanger.   

(4) A fluid reservoir is set to adjust the liquid mass participating in the heat transfer process, 

which can reduce the thermal capacity of the outdoor part and react to the solar radiation vary 

rapidly.   

(5) The working fluid in the loop heat pipe is retained at low temperature over the whole 

operation process, which ensures a constant higher solar efficiency.  And the temperature of 

evaporator in heat pump is higher than a typical water heater with heat pump, which also 

profits with a higher coefficient performance (COP).   
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3. Mathematical model and simulations  

The simple 1D steady-state model is effective in simulating the performance of the system. 

So the 1D matrix was considered in this study.  The novel façade-based solar water heater 

system the solar energy conversion and transfer involves three processes, namely: (i) 

absorbing the certain percentage of solar radiation while remaining being lose into the 

surrounding air,  thQ   (ii) transporting the other part of absorbed energy to the heat exchanger 

of secondary water tank via the loop heat pipe, uQ  (iii) then transporting some part of the 

energy to(or from while the water temperature in the secondary water tank is higher than the 

plate heat exchanger) the secondary water tank ,s tkQ   and transporting the other part of the 

heat to the passing refrigerant , ,e tQ  , and (iv) upgrading the refrigerant-received heat into 

higher grade energy using a heat pump.  These processes are interconnected and finally can 

achieve an energy balance among each other under the steady state operation.   

 

3.1 Loop-heat-pipe with solar energy absorber 

In operation, solar radiation striking on the absorber will pass across the top cover and be 

absorbed by the coated surface of the absorbers. Part of the absorbed energy will be 

dissipated back into the surroundings owing to the directional/diffusive reflection and 

conductive/convective heat transfer occurring; whereas remaining energy will be absorbed 

by the heat pipe fluid.   Under the steady-state condition, the rate of useful heat equals to 

the absorbed energy minus the overall heat loss, as showed in Fig. 4.   

The useful part of solar energy should be immediately taken away from the absorbers by 

using the heat pipe loop.  This could be achieved by working fluid evaporation in the 

evaporator section and condensation on the heat exchanger surface in the secondary water 

tank.  In the condensing heat exchanger, the vapour working fluid is condensed and 

transfers the condensation heat into the product water.  Then heat transfer takes place 

between the heat pump evaporator wall and water in the secondary water tank, thus leading 

the evaporation of the refrigerant in the evaporator of the heat pump, as depicted in Fig. 5.    

 

The heat balance of the loop-heat-pipe with solar energy absorber part could be expressed 

as:  
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1 2 3 4 5

( ) p hx
g c m L m p a

t t
A I U A t t

R R R R R
τ α

−
− − =

+ + + +                                                                          (1) 

 

where I  is the solar radiation striking on the panel.  So g c mA Iτ α  means the solar energy 

received by the coated fin surface absQ .   

 

Owing to the temperature difference between the absorber surface and the surrounding air, 

certain amount of energy will be transferred into the ambient across the top cover.  For an 

absorber surface with the temperature of pt  , by calculating ( )L m p aU A t t−  we can get the 

heat dispersion LQ  from the absorber to the ambient [16, 17], where the LU  is the overall 

heat transfer coefficient from the absorbers to the ambient across the double-glazed cover 

top and could be written as: 

 

, 2 , 2 1 , 1

1 1 1
L

R p c R c c R c a

U
h h h h h h− − −

=
+ + +c, p- c2 c, c2- c1 c, c1- a

（ + + ）
 

 (2) 

 

Assuming a natural convective air layer in existence between the heat pipe absorber and 

the inner glazing cover, the corresponding heat transfer coefficient can be expressed as [16, 

17]: 
 

0.331.6
, ,

, 2
, , ,

cos1708 1708sin(1.8 )1 1.446(1 ) 1 1
cos cos 5830

a p a p
c p c

a p a p a p

K Ra
h

Ra Ra
θθ

δ θ θ

+

+
−

⎫⎡ ⎤⎧ ⎡ ⎤ ⎛ ⎞⎪ ⎪= + − − + −⎢ ⎥⎢ ⎥⎨ ⎬⎜ ⎟
⎢ ⎥ ⎝ ⎠⎪ ⎢ ⎥⎩ ⎪⎣ ⎦ ⎣ ⎦ ⎭

 (3) 

 
3

2 ,
, ,

, ,

( )
Prp c a p

a p a pw
a p a m

g t t
Ra

t
δ

ν
−

=  (4) 

 
, 2( ) / 2a m p ct t t= +  (5) 

 

Converting the radiation transfer into the equivalent convective one, a radiation-relevant 

factor is expressed as [17]: 
 

2 2
2 2

, 2
2

( )( )
(1 / ) (1 / ) 1

p c p c
R p c

p c

t t t t
h

σ
ξ ξ−

+ +
=

+ −
 (6)

  
 

By carrying out a similar analysis, the heat transfer from the inner glazing cover to the 
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outer glazing cover can be expressed using the equations as followings [17]: 

 
0.331.6

, ,
, 2 1

, , ,

cos1708 1708sin(1.8 )1 1.446(1 ) 1 1
cos cos 5830

a c a c
c c c

a c a c a c

K Ra
h

Ra Ra
θθ

δ θ θ

+

+
−

⎫⎡ ⎤⎧ ⎡ ⎤ ⎛ ⎞⎪ ⎪= + − − + −⎢ ⎥⎨ ⎬⎢ ⎥ ⎜ ⎟
⎝ ⎠⎪ ⎢ ⎥⎩ ⎣ ⎦ ⎪⎣ ⎦ ⎭

 (7) 

 
3

2 1 ,
, ,2

, ,

( )
Prc c a p

a p a c
a c c m

g t t
Ra

t
δ

ν
−

=  (8) 

 
, 1 2( ) / 2c m c ct t t= +  (9) 

 
2 2

1 2 1 2
, 2 1

1 2

( )( )
(1/ ) (1/ ) 1

c c c c
R c c

c c

t t t th σ
ξ ξ−

+ +
=

+ −
 ( 1 0 ) 

 

For convective heat transfer coefficient from a surface exposed to outside wind, it can be 

calculated using the Klein equation [17]: 
 

0.6

, 1 0.4

8.6
c c a

Vh
L− =  ( 1 1 ) 

 

It should be noted that the minimum convective coefficient for wind-exposed surface is 

considered to be 5W/ (m2 K); if the calculation of , 1c c ah −  gives a lower value, this should be 

used as a minimum.   

 

The radiation heat transfer coefficient is given [17]: 
 

2 2
, 1 1 1 1 2( )( )R c a c c a c ch t t t tξ σ− = + +  ( 1 2 ) 

 

Similarly, for the modules with single glazing top cover, the items addressed in equation 

(7) should be removed, while the heat transfer from inner glazing cover to outer glazing 

cover will not be counted.  

The right part of the expression (1): 
1 2 3 4 5

p hxt t
R R R R R

−
+ + + +

, is the useful part of solar 

energy transfer from the heat pipe wall to the heat exchanger wall uQ .  This part of heat 

will eventually be converted into the heat received by the refrigerant and water in the 

secondary water tank.  In that case, the module's thermal efficiency can be defined as: 
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th u
th

m m

Q Q
A I A I

η = =  ( 1 3 ) 

 

This process involves several thermal resistances, which are the major factors impacting on 

the magnitude of the loop heat transfer and is detailed as follows.   

 

 

3.1.1 Thermal resistance of heat pipe wall, R1  

Heat transfer through the heat pipe wall is a typical steady-state conduction process, and its 

thermal resistance can be written as[18]: 

 

, ,
1

,

ln( / )
2

hp o hp in

hp e hp hp

D D
R

L K Nπ
=  ( 1 4 ) 

 

 

3.1.2 Thermal resistance of wick structure, R2 

Inner surface of the heat pipe wall is attached with the mesh wick which causes certain 

resistance in heat transfer; this part of resistance can be written as[18]:  

 

, ,
2

,

ln( / )
2

hp in v e

hp e hp hp

D D
R

L K Nπ
=  ( 1 5 ) 

 
( ) (1 )( )

[( ) (1 )( )]
l l s wi l s

wi
l s wi l s

K K K K K
K

K K K K
ξ

ξ
+ − − −⎡ ⎤⎣ ⎦=

+ + − −
 ( 1 6 ) 

 
1.051

4
wi wi

wi
n Dπξ = −  ( 1 7 ) 

 
where wiK  is the effective thermal conductivity of the wick depending upon the porosity of 

the wick and saturation property of the working fluid.   

 

3.1.3 Thermal resistance of vapour flow, R3 

The vapour flow process from the evaporation section to the condensing heat exchanger 

experiences certain pressure loss and consequently the temperature drop.  This creates a 

resistance in heat transfer which could be written as [13]:  
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2
0

3
v v hp

u fg v

t R P N
R

Q h P
Δ

=  ( 1 8 )  

 
, , , ,v v e v f v tl v hxP P P P PΔ = Δ + Δ + Δ + Δ  ( 1 9 ) 

 

(i) Pressure drop in the evaporator section 

 , 4
,8 ( / 2)

u
v e

v v e fg hp

QP
D h Nρ

Δ = −  ( 2 0 ) 

 

(ii) Pressure drop in the vapour header 

  , 4
,

4
( / 2)

v f u
v f

v v f fg hp

L Q
P

D h N
μ

πρ
Δ = −  ( 2 1 ) 

 

(iii) Pressure drop in the vapour transportation line 

  , 4
,

4
( / 2)

v tl u
v tl

v v tl fg hp

L QP
D h N
μ

πρ
Δ = −  ( 2 2 ) 

 

(iv) Pressure drop in the condensation section 

 , 2 4
,

4 1
8 ( / 2) ( / 2) 1

u
v c

v v hx fg hp hx

QP
D h N Nπ ρ

Δ =
−

 ( 2 3 ) 

 

3.1.4  Thermal resistance of condensed liquid film, R4 

The condensed liquid film will be evenly distributed on the surface of the condensing heat 

exchanger (heat pipe fluid side) and its associated flow resistance is [18] 

 , ,
4

ln[ /( 2 )]
2 ( / 2 1)

hx in hx in lf

lf lf hx

D D
R

L K N
δ

π
−

=
−

 ( 2 4 ) 

 

3.1.5 Thermal resistance of heat exchanger plat, R5 

The equivalent thermal resistance of heat exchanging plate is written as [18]:  

, ,
5

ln[ / ]
2 ( / 2) ( / 2 1)

hx o hx in

hx hx hx

D D
R

H K Nπ
=

−
 ( 2 5 ) 

 

3.2 Heat pump system 

In this model, the water in the secondary water tank, which leads to mild temperature 

variation in heat exchanger, will capture or release some part of the energy in the plate heat 

exchanger, which can be expressed as[18]:  
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, , , ,( )s tk c w hx hx s hx s tkQ h A t t−= −  ( 2 6 ) 
 

,
w w hx

c w hx
hx

K Nuh
H

−
− =  ( 2 7 ) 

 
1/ 4

9 /16 4 / 9

0.670.68
[1 (0.492 / Pr) ]w hx

RaNu − = +
+

 ( 2 8 ) 

 
3

,( )hx s tk hx
w hx

g t t H
Ra

β
υα−

−
=  ( 2 9 ) 

 
The other part of heat received by the refrigerant causes its evaporation within the condensing 

heat exchanger. This refrigerant vapour is then upgraded through a compressor to a high 

temperature refrigerant vapour, which, in the condenser of the heat pump cycle, is condensed 

and releases heat to the tank water, resulting temperature rises of the water and condensation 

of the refrigerant.  

 

The heat received by the refrigerant is given as[19]: 

 

 , , 1 4( )e t r c rQ m A H H= −  ( 3 0 ) 

 

Under the steady-state condition, the rate of the useful heat delivered by the loop heat pipe 

equals to the rate of the energy absorbed by the water in secondary water tank plus the heat 

received by the refrigerant of heat pump, which could be expressed as:  

 

 , ,u s tk e tQ Q Q= +  ( 3 1 ) 

 

The refrigerant within the heat pump cycle passes across the channels of the plate heat 

exchanger (refrigerant side) where it is evaporated into vapour. This process involves the 

turbulent and forced convection heat transfer, which can be written as: 

 

,

,

( ) ( )hx inr r
r hx r

hx r

DHu h t t
x A

πρ∂
= −

∂
 ( 3 2 ) 

 

where rH  is the average specific enthalpy of the refrigerant determined by  
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(1 )r v lH xH x H= + −  ( 3 3 ) 
 

The following expressions can be used to determine the heat transfer coefficient rh  for 

single-phase flows [20].   

 

 
0.8

,

0.023Re Pr a
r

r
hx in

Kh
D

=  ( 3 4 ) 

 

where the exponent a  is equal to 0.3 for liquid and 0.4 for vapour flow.    

 

The local heat transfer coefficient for two-phase flow is calculated from a correlation, in that 

[20] 

 

( )

0.45

2

( ) 3.4 ,0

( ) ( ) , 1
1

tp tt l d

r d
tp d tp d v d

d

h x X h x x
h x xh x h x h x x

x

−⎧ = < ≤
⎪

= ⎨ ⎛ ⎞−
− − < ≤⎪ ⎜ ⎟−⎝ ⎠⎩

 ( 3 5 ) 

 
where dx  is the dry-out vapour quality; ttX  is the Lockhart-Martinelli parameter which is 

expressed as [20]:  

 
0.1 0.5 0.91l v

tt
v l

xX
x

μ ρ
μ ρ

⎛ ⎞ ⎛ ⎞ −⎛ ⎞= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

 ( 3 6 ) 

 

The authors in a previous study had developed the following compressor model. The mass 

flow rate rm  of the refrigerant is given by [21] 

 

60
v d

r
s

nVm η
υ

=  ( 3 7 ) 

 

where vη  is the volumetric efficiency , n  is the rotating speed, dV  is the displacement 

volume, and sυ  is the specific volume of the refrigerant gas at compressor suction.  

 

The theoretical power consumption and the input power consumption of the compressor are 

respectively given by [21] 
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d
th v d s

s

k PN nV P
k P

η
−

⎡ ⎤
⎛ ⎞⎢ ⎥= −⎜ ⎟⎢ ⎥− ⎝ ⎠⎢ ⎥⎣ ⎦

 ( 3 8 ) 

 

and 

 

th
in

i m mo

NN
ηη η

=  ( 3 9 ) 

 

where iη  , mη and moη  are the indicated efficiency, mechanical efficiency and motor 

efficiency, respectively.  

 

The refrigerant mass flow rate through the expansion valve can be determined by the 

following equation [21], at condenser pressure cP  and evaporator pressure eP , 

 

 2 ( )r f f r c em C A P Pρ= −  ( 4 0 ) 

 

where fC  is the mass flow rate coefficient that depends on the refrigerant density at the 

valve inlet. 

 

Heat flow of the refrigerant in the condenser coil is the same as equation (32). Because of the 

difference in the two-phase flow pattern in the evaporator and the condenser, the 

condensation heat transfer coefficient in two-phase flow region is determined as follows[22],  

 

 
0.76 0.04

0.8
0.38

3.8 (1 )(1 )
Pr

r r
tp l r

r

x xh h x
⎡ ⎤−

= − +⎢ ⎥
⎣ ⎦

 ( 4 1 ) 

 

And heat flow at the immersed condenser coil and the water in primary water tank is 

described by the following equation [19],  

 

( ) ( )c r i r cc w cc tkQ H A t t H t t= − = −  ( 4 2 ) 
 

The coefficient of performance (COP) of the system could be defined as the ratio of system's 
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overall heat output and compressor power consumption, as follows [19]:  

 

c

in

QCOP
N

=  ( 4 3 ) 

 

3.3 Computation method 

 

In this study, numerical simulation with the use of the steady state model was executed to 

predict the performance of the system when each section of the system finally achieves an 

energy balance. Fig. 6 gives the flow chart of the computation process for the system. The 

computer model began with the call for the pre-set external weather conditions, system 

structure and operating parameters.  The simulation included the performance of the loop-

heat-pipe and heat pump cycle.  The loop-heat-pipe was first computed using the given 

meteorological data I  and at  to determine the heat pipe wall temperature pt  from an initial 

guess for the plate heat exchanger temperature hxt .  And the computer looped through the 

compressor, condenser, expansion valve and evaporator (plate heat exchanger) by iteration 

until a converged solution was obtained.  It should be noted that this model was a revised 

version of the loop-heat-pipe simulation model carried out by Zhao et al. [23, 24] and the heat 

pump simulation model carried out by Ji et al. [20, 21], which had already been proved with 

their accuracy for predicting the thermal performance. More detailed descriptions of the 

above numerical process could be found in Zhao et al. [23, 24] and Ji et al. [20, 21].  

 

 

4. Results and discussion 

 

The novel LHP heat pump system integrated with building performance was dependent upon 

its operation and geometrical parameters.  In order to evaluate the whole system for different 

working fluids and different operational parameters, the first set of the LHP in the system is 

characterized using the dedicated selected parameters shown in Table 1.  Table 2 gives the 

indicative equipment specification of the heat pump in the system being studied, with R134a 

as the working fluid.  The impacts of working fluids used in LHP and impact of the 

operational parameters (e.g., number of glazing covers, solar radiation, number of flat plate 

heat exchanger, solar radiation, air temperature) on the system performance were analyzed. 



Page 16 of 36

Acc
ep

te
d 

M
an

us
cr

ip
t

The results were illustrated as below: 

 
 

4.1 Impact of heat pipe working fluid  

Running the above analytical computer model, the results obtained was used to analyse the 

relationship between the heat transfer performance and the selection of heat pipe working 

fluid.  While remaining the operational parameters constant, change of the working fluid in 

the heat pipe would lead to the variation of the system heat transfer performance and the 

results of the simulation were illustrated in Fig. 7.  It indicates that the wall temperatures of 

heat pipe containing refrigerants are higher than that containing water.  Among the 

refrigerants, the wall temperature of heat pipe that containing R600a is lowest.  The useful 

heat which absorbed by the system that using water as working fluid is higher than that of 

using refrigerants, and among the refrigerants, using R600a leads to the highest useful energy 

absorbed.  It can be found that by applying water as the working fluid of the LHP, the system 

can achieve higher solar thermal efficiency and COP.  Meanwhile, the use of R600a can 

obtain higher solar thermal efficiency and COP over R134a and R22 with this particular 

design.   

 

This phenomenon can be explained as followed: the latent heat of refrigerants was about a 

tenth of water at the same temperature, and thus enhanced the evaporation rate of the working 

fluid.  Increasing the vapour amount of working fluid flowing in the pipe would create 

increased pressure drop within the piping, which would consequently lead to increased 

thermal resistance of vapour flow.  Moreover, water had a relatively larger thermal 

conductivity than refrigerants, which would consequently result in lower thermal resistance 

of wick structure and condensed liquid film.  The superiority of water enabled the higher 

amount of heat transported to the heat pump and furthermore, the larger amount of refrigerant 

mass flow rate within the heat pump would increase the convective heat transfer coefficient.  

Apparently, water could give a better thermal performance compared with these refrigerants.  

 

The final choice of the working fluid for the loop heat pipe was R600a.  A favorite working 

fluid in the LHP heat pump system should be of characteristics of not only good 

thermophysical properties, which allowed a large amount of heat to be conducted from the 

outdoor part to the indoor part with minimum fluid flow, but also the proper vapour pressure 
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over the operating temperature range.  As the vapour pressure of water at the operating 

temperature was far below standard atmospheric pressure, it needs evacuation while filling 

the water into the heat pipe.  However, refrigerants allowed the loading process carried out 

under atmospheric pressure.  As we can see from the results listed above, R600a is the most 

preferable option for the heat pipe working fluid compared with R134a and R22. 

 
 

 

4.2 Impact of the top glazing covers 

The efficiency of the system would also depend upon the number of the top glazing covers. 

Varying the layer of the top glazing covers from 0 to 2 while remain the above system 

structure and operating conditions constant, simulation was carried out using the established 

computer programme, and the results of the simulation were illustrated in Fig. 8.  It indicates 

that increasing the number of the glazing cover led to increase in the thermal efficiency (from 

25.90% to 44.7%) and in the system's COP (from 3.69 to 5.27). The increasing percentage of 

the thermal efficiency and system's COP were found to be 51.5% and 28.8% when increasing 

the number of glazing covers from 0 to 1, while these to be 14.0% and 10.8% when 

increasing the number of glazing covers from 1 to 2.   

 

This phenomenon is mainly due to more glazing covers helped reduce the heat transfer 

between ambient and heat pipe, thus leading to higher thermal efficiency and system's overall 

performance coefficient.  The final choice for the system was the single glazing cover as it 

could minimize heat loss and reduce the weight of the module for safety which was very 

important for the façade-based system. 

 

4.3 Impact of plate heat exchanger  

Theoretically, more heat exchangers would lead to enhancing the heat transfer between the 

heat pipe condensing fluid on one side of the heat exchanging plate and heat pump 

evaporating fluid flow across the other side and therefore, enhanced heat output in terms of 

solar energy conversion.  Varying the number of the plate heat exchangers between LHP and 

heat pump from 1 to 3 while remaining other parameters constant, simulation was carried out 

using the established computer programme, and the results of the simulation were shown in 

Fig. 9. It is found that applying more plate heat exchangers decreased the temperature at heat 

pipe wall (from 62.8 oC to 55.6 oC), while enabled increased solar thermal efficiency (from 
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39.25% to 47.3%), and enhanced the system's overall performance (from 4.76 to 5.36).  The 

increasing percentage of the thermal efficiency and system's COP were found to be 17.1% 

and 10.8% when increasing the number of plate heat exchanger from 1 to 2, while these to be 

2.9% and 1.6% when increasing the number of glazing covers from 2 to 3.   

 

However, it should be noted that the more the plate heat exchangers used, the more 

refrigerants need to be filled in the system.  While we just only considered the heat transfer 

characteristic of the system, the impact of the filling amount of refrigerants filled in the heat 

pump would be taken into consideration in the dynamic model.  

 
 

4.4 Impact of external parameters 

The system's thermal performance would vary with the external parameters, i.e., solar 

radiation and ambient air temperature. Varying the solar radiation from 200 to 800 W/m2 

while remaining other parameters constant, simulation was carried out using the established 

computer programme. Varying the ambient air temperature from 10 oC to 30 oC while remain 

the other parameters constant, simulation was carried out. The results of the simulation were 

shown in Fig. 10 and Fig. 11. It is found that increasing the solar radiation led to significant 

increase in temperature at heat pipe wall (from 35.3 oC to 75.4 oC) and in heat pump's COP 

(from 2.68 to 5.46), and decrease in thermal efficiency (from 42.2% to 38%). However, under 

certain solar radiation, the thermal efficiency (from 35.0% to 43.6%) and COP (from 4.50 to 

5.01) would increase when the ambient temperature increased. The phenomena could be 

explained as follows: a higher solar radiation yielded an enhanced solar heat transfer, which 

would help increases the evaporating temperature thus improves system's COP. Meanwhile, 

the increasing of the temperature of the heat pipe wall would increase the heat loss thus 

leading to decrease in thermal efficiency. Having fixed up solar radiation, the higher ambient 

air temperature reduced the module's heat loss and increased the heat pump evaporating 

temperature, resulting in increase in the system's thermal efficiency and COP. Since higher 

levels of solar radiation and ambient temperature are favourable to the COP, using various 

compressor speed design is the preferable option in the system. 

 
 

5. Conclusion 

Based on an innovative loop-heat-pipe façade and its combination with a heat pump for use 
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in water heating, a theoretical investigation into the thermal performance of such a system 

was carried out by the combined effort of thermo-fluid analyses, computer numerical model 

development, model running up, modelling result analyses and conclusion.  This research 

would help understand the insights, promote development and market penetration of such an 

innovative solar heating technology, and hence contributed to achieving the global targets in 

energy saving and carbon emission in the building sector.   

 

In terms of the working fluids, water, R600a, R134 and R22 were applicable for use in the 

heat pipe loop.  Of those, water presented the highest heat transfer capacity but required the 

lowest pressure (below the atmospheric pressure), which may create a certain level of 

difficulty in operation, especially for large scale building application.  R600a, with the second 

largest heat transfer capacity and positive operational pressure (above the atmospheric 

pressure), was considered the most favorite fluid for use in building scale loop heat pipe.  

 

In terms of the system configuration, glazing cover and heat exchanger were the important 

factors impacting on the thermal performance of the system.  Increasing the number of the 

glazing covers led to the increase of the solar absorber's thermal efficiency and the COP of 

the whole system.  Considering the balance of the economy, safety and efficiency, single-

glazed-cover may be a good choice for the façade based solar system application. Increasing 

heat transfer area of the heat exchanger, the solar absorber's thermal efficiency and the 

system's COP would initially rise up quickly.                   

 

External parameters including ambient temperature and solar radiation also had impact on the 

thermal performance of the system. Higher ambient temperature led to reduce heat loss from 

the solar absorber to the surrounding, and hence enhanced solar thermal efficiency of the 

absorber and COP of the whole system. Similarly, higher solar radiation helped improve the 

thermal efficiency of the solar absorber as well as the COP of the whole system. 

 

It should be stressed that the paper has only reported the theoretical study of the system that 

was the first stage of the research. Follow-on works including system prototype construction, 

laboratory-based measurement, and model validation/modification will be reported in the 

subsequent paper.  
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Fig. 1: Schematics of the novel solar loop-heat-pipe water heating system 

 

Fig. 2: Schematic of three-way feeding and vapour/liquid separation structure 

 

Fig. 3: heat pump thermodynamic cycle in T-S chart  

 

Fig. 4: Schematic of heat transfer within the absorber  

 

Fig. 5: Schematic of heat transfer along the loop-heat-pipe 

 

Fig. 6: Flow chart of the computation process for the system model 

 

Fig. 7: Temperature at heat pipe wall, useful energy absorbed by LHP, module thermal 

efficiency and COP as a function of different working fluids 

 

Fig. 8: Temperature at heat pipe wall, useful energy absorbed by LHP, module thermal 

efficiency and COP as a function of number of glazing covers 

 

Fig. 9: Temperature at heat pipe wall, useful energy absorbed by LHP, module thermal 

efficiency and COP as a function of number of plate heat exchanger 

 

Fig.10: Temperature at heat pipe wall, useful energy absorbed by LHP, module thermal 

efficiency and COP as a function of solar radiation 

 

Fig. 11: Temperature at heat pipe wall, useful energy absorbed by LHP, module thermal 

efficiency and COP as a function of air temperature 
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Table 1: Design parameters of the LHP operation and heat exchanger 

Parameters Nomenclature Value Unit 
External diameter of evaporator Dhp,o 0.016 m 
Internal diameter of evaporator Dhp,in 0.015 m 
Thermal conductivity of evaporator wall Khp 394 w/m-K 
Evaporator length Lhp,e 1.2 m 
Internal diameter of three-way feeding Dv,f 0.014 m 
Evaporator-to-condenser height difference Hhx-hp 0.25 m 
Liquid filling level mf 35 % 
Transportation line outer diameter  Dltl,o / Dvtl,o 0.032 m 
Transportation line inner diameter  Dltl,in / Dvtl,in 0.029 m 
Transportation line length  Lltl / Lvtl 1.0/1.2 m 
Wire diameter (wick layer I) Dowi,ms 7.175×10-5 m 
Layer thickness (wick layer I) δowi,ms 3.75×10-4 m 
Mesh number (wick layer I) nowi,ms 6299 /m 
Wire diameter (wick layer II) Diwi,ms 12.23×10-5 m 
Layer thickness (wick layer II) δiwi,ms 3.75×10-4 m 
Mesh number (wick layer II) niwi,ms 2362 /m 
Wick conductivity  Ks,ms 394 w/m-K 
Numver of heat pipes N 10 - 
Heat exchanger plate thickness δhx 0.0024 m 
Heat exchanger plate height Hhx 0.289 m 
Heat exchanger plate cluster width Whx 0.318 m 
Heat exchanger plate cluster length Lhx 0.119 m 
Heat exchanger plate conductivity Khx 16.28 w/m-K 
Heat exchanger number of plate nhx 140 - 
Volume of the secondary water tank Vs,tk 30 L 
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Table 2: Design parameters of the heat pump 

Parameters Nomenclature Value Unit 
Rated input power of compressor Nin,rated 0.25 HP 
Diameter of immersed coil in condenser Dcc 9.52 mm 
Thickness of the immersed coil  δcc 1.00 mm 
Length of the immersed coil Lcc 4 m 
Volume of the primary water tank Vtk 150 L 
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Fig. 1: Schematics of the novel solar loop-heat-pipe water heating system 

Fig1
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Fig. 2: Schematic of three-way feeding and vapour/liquid separation structure 

Fig2
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Fig. 3: heat pump thermodynamic cycle in T-S chart  

 

Fig3
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Fig. 4: Schematic of heat transfer within the absorber  

 

Fig4
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Fig. 5: Schematic of heat transfer along the loop-heat-pipe 

 

Fig5
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Fig. 6: Flow chart of the computation process for the system model 

 

 

Figure(s)



Page 31 of 36

Acc
ep

te
d 

M
an

us
cr

ip
t

 

 

Fig. 7: Temperature at heat pipe wall, useful energy absorbed by LHP, module thermal efficiency and COP as a 

function of different working fluids 

 

Figure(s)



Page 32 of 36

Acc
ep

te
d 

M
an

us
cr

ip
t

 

Fig. 8: Temperature at heat pipe wall, useful energy absorbed by LHP, module thermal efficiency and COP as a 

function of number of glazing covers 

 

Figure(s)
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Fig. 9: Temperature at heat pipe wall, useful energy absorbed by LHP, module thermal efficiency and COP as a 

function of number of plate heat exchanger 

 

Figure(s)
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Fig. 10: Temperature at heat pipe wall, useful energy absorbed by LHP, module thermal efficiency and COP as a 

function of solar radiation 

 

Fig10
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Fig. 11: Temperature at heat pipe wall, useful energy absorbed by LHP, module thermal efficiency and COP as a 

function of air temperature 
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 A novel solar loop-heat-pipe façade based heat pump water heating system is 

described.  

 A dedicated theoretical investigation into the thermal performance of the system 

is presented.  

 R600a is suggested to be the favorite working fluid that filled in the Loop Heat 

Pipes compared to water, R134a and R22.  

 The impacts of the system configuration and external parameters are explored.  

*Highlights (for review)




