717 research outputs found

    Improved cosmological constraints on the curvature and equation of state of dark energy

    Full text link
    We apply the Constitution compilation of 397 supernova Ia, the baryon acoustic oscillation measurements including the AA parameter, the distance ratio and the radial data, the five-year Wilkinson microwave anisotropy probe and the Hubble parameter data to study the geometry of the universe and the property of dark energy by using the popular Chevallier-Polarski-Linder and Jassal-Bagla-Padmanabhan parameterizations. We compare the simple χ2\chi^2 method of joined contour estimation and the Monte Carlo Markov chain method, and find that it is necessary to make the marginalized analysis on the error estimation. The probabilities of Ωk\Omega_k and waw_a in the Chevallier-Polarski-Linder model are skew distributions, and the marginalized 1σ1\sigma errors are Ωm=0.2790.008+0.015\Omega_m=0.279^{+0.015}_{-0.008}, Ωk=0.0050.011+0.006\Omega_k=0.005^{+0.006}_{-0.011}, w0=1.050.06+0.23w_0=-1.05^{+0.23}_{-0.06}, and wa=0.51.5+0.3w_a=0.5^{+0.3}_{-1.5}. For the Jassal-Bagla-Padmanabhan model, the marginalized 1σ1\sigma errors are Ωm=0.2810.01+0.015\Omega_m=0.281^{+0.015}_{-0.01}, Ωk=0.0000.006+0.007\Omega_k=0.000^{+0.007}_{-0.006}, w0=0.960.18+0.25w_0=-0.96^{+0.25}_{-0.18}, and wa=0.61.6+1.9w_a=-0.6^{+1.9}_{-1.6}. The equation of state parameter w(z)w(z) of dark energy is negative in the redshift range 0z20\le z\le 2 at more than 3σ3\sigma level. The flat Λ\LambdaCDM model is consistent with the current observational data at the 1σ1\sigma level.Comment: 10 figures, 12 pages, Classical and Quantum Gravity in press; v2 to match the pulished versio

    Synthesis of Mesoporous Silica@Co–Al Layered Double Hydroxide Spheres: Layer-by-Layer Method and Their Effects on the Flame Retardancy of Epoxy Resins

    Get PDF
    Hierarchical mesoporous silica@Co–Al layered double hydroxide (m-SiO2@Co–Al LDH) spheres were prepared through a layer-by-layer assembly process, in order to integrate their excellent physical and chemical functionalities. TEM results depicted that, due to the electrostatic potential difference between m-SiO2 and Co–Al LDH, the synthetic m-SiO2@Co–Al LDH hybrids exhibited that m-SiO2 spheres were packaged by the Co–Al LDH nanosheets. Subsequently, the m-SiO2@Co–Al LDH spheres were incorporated into epoxy resin (EP) to prepare specimens for investigation of their flame-retardant performance. Cone results indicated that m-SiO2@Co–Al LDH incorporated obviously improved fire retardant of EP. A plausible mechanism of fire retardant was hypothesized based on the analyses of thermal conductivity, char residues, and pyrolysis fragments. Labyrinth effect of m-SiO2 and formation of graphitized carbon char catalyzed by Co–Al LDH play pivotal roles in the flame retardance enhancement

    Observation of a near-threshold enhancement in th p pbar mass spectrum from radiative J/psi-->gamma p pbar decays

    Full text link
    We observe a narrow enhancement near 2mp in the invariant mass spectrum of ppbar pairs from radiative J/psi-->gamma ppbar decays. The enhancement can be fit with either an S- or P-wave Breit Wigner fuction. In the case of the S-wave fit, the peak mass is below the 2mp threshold and the full width is less than 30 MeV. These mass and width values are not consistent with the properties of any known meson resonance.Comment: 5 pages, 4 figures, submitted to Phys. Rev. Let

    JUNO Conceptual Design Report

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is proposed to determine the neutrino mass hierarchy using an underground liquid scintillator detector. It is located 53 km away from both Yangjiang and Taishan Nuclear Power Plants in Guangdong, China. The experimental hall, spanning more than 50 meters, is under a granite mountain of over 700 m overburden. Within six years of running, the detection of reactor antineutrinos can resolve the neutrino mass hierarchy at a confidence level of 3-4σ\sigma, and determine neutrino oscillation parameters sin2θ12\sin^2\theta_{12}, Δm212\Delta m^2_{21}, and Δmee2|\Delta m^2_{ee}| to an accuracy of better than 1%. The JUNO detector can be also used to study terrestrial and extra-terrestrial neutrinos and new physics beyond the Standard Model. The central detector contains 20,000 tons liquid scintillator with an acrylic sphere of 35 m in diameter. \sim17,000 508-mm diameter PMTs with high quantum efficiency provide \sim75% optical coverage. The current choice of the liquid scintillator is: linear alkyl benzene (LAB) as the solvent, plus PPO as the scintillation fluor and a wavelength-shifter (Bis-MSB). The number of detected photoelectrons per MeV is larger than 1,100 and the energy resolution is expected to be 3% at 1 MeV. The calibration system is designed to deploy multiple sources to cover the entire energy range of reactor antineutrinos, and to achieve a full-volume position coverage inside the detector. The veto system is used for muon detection, muon induced background study and reduction. It consists of a Water Cherenkov detector and a Top Tracker system. The readout system, the detector control system and the offline system insure efficient and stable data acquisition and processing.Comment: 328 pages, 211 figure

    Transverse energy production and charged-particle multiplicity at midrapidity in various systems from sNN=7.7\sqrt{s_{NN}}=7.7 to 200 GeV

    Full text link
    Measurements of midrapidity charged particle multiplicity distributions, dNch/dηdN_{\rm ch}/d\eta, and midrapidity transverse-energy distributions, dET/dηdE_T/d\eta, are presented for a variety of collision systems and energies. Included are distributions for Au++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200, 130, 62.4, 39, 27, 19.6, 14.5, and 7.7 GeV, Cu++Cu collisions at sNN=200\sqrt{s_{_{NN}}}=200 and 62.4 GeV, Cu++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV, U++U collisions at sNN=193\sqrt{s_{_{NN}}}=193 GeV, dd++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV, 3^{3}He++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV, and pp++pp collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV. Centrality-dependent distributions at midrapidity are presented in terms of the number of nucleon participants, NpartN_{\rm part}, and the number of constituent quark participants, NqpN_{q{\rm p}}. For all AA++AA collisions down to sNN=7.7\sqrt{s_{_{NN}}}=7.7 GeV, it is observed that the midrapidity data are better described by scaling with NqpN_{q{\rm p}} than scaling with NpartN_{\rm part}. Also presented are estimates of the Bjorken energy density, εBJ\varepsilon_{\rm BJ}, and the ratio of dET/dηdE_T/d\eta to dNch/dηdN_{\rm ch}/d\eta, the latter of which is seen to be constant as a function of centrality for all systems.Comment: 706 authors, 32 pages, 20 figures, 34 tables, 2004, 2005, 2008, 2010, 2011, and 2012 data. v2 is version accepted for publication in Phys. Rev.

    Measurement of long-range angular correlation and quadrupole anisotropy of pions and (anti)protons in central dd++Au collisions at sNN\sqrt{s_{_{NN}}}=200 GeV

    Full text link
    We present azimuthal angular correlations between charged hadrons and energy deposited in calorimeter towers in central dd++Au and minimum bias pp++pp collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV. The charged hadron is measured at midrapidity η<0.35|\eta|<0.35, and the energy is measured at large rapidity (3.7<η<3.1-3.7<\eta<-3.1, Au-going direction). An enhanced near-side angular correlation across Δη>|\Delta\eta| > 2.75 is observed in dd++Au collisions. Using the event plane method applied to the Au-going energy distribution, we extract the anisotropy strength v2v_2 for inclusive charged hadrons at midrapidity up to pT=4.5p_T=4.5 GeV/cc. We also present the measurement of v2v_2 for identified π±\pi^{\pm} and (anti)protons in central dd++Au collisions, and observe a mass-ordering pattern similar to that seen in heavy ion collisions. These results are compared with viscous hydrodynamic calculations and measurements from pp++Pb at sNN=5.02\sqrt{s_{_{NN}}}=5.02 TeV. The magnitude of the mass-ordering in dd++Au is found to be smaller than that in pp++Pb collisions, which may indicate smaller radial flow in lower energy dd++Au collisions.Comment: 424 authors, 8 pages, and 4 figures. v2 is version accepted for publication in Phys. Rev. Lett. Published version will be at http://www.phenix.bnl.gov/phenix/WWW/info/pp1/161/ Plain text data tables will be at http://www.phenix.bnl.gov/papers.htm

    Cold-nuclear-matter effects on heavy-quark production at forward and backward rapidity in d+Au collisions at sqrt(s_NN)=200 GeV

    Full text link
    The PHENIX experiment has measured open heavy-flavor production via semileptonic decay muons over the transverse momentum range 1 < pT < 6 GeV/c at forward and backward rapidity (1.4 < |y| < 2.0) in d+Au and p+p collisions at ?sNN = 200 GeV. In central d+Au collisions an enhancement (suppression) of heavy-flavor muon production is observed at backward (forward) rapidity relative to the yield in p+p collisions scaled by the number of binary collisions. Modification of the gluon density distribution in the Au nucleus contributes in terms of anti-shadowing enhancement and shadowing suppression; however, the enhancement seen at backward rapidity exceeds expectations from this effect alone. These results, implying an important role for additional cold nuclear matter effects, serves as a key baseline for heavy-quark measurements in A+A collisions and in constraining the magnitude of charmonia breakup effects at the Relativistic Heavy Ion Collider and the Large Hadron Collider.Comment: 424 authors, 69 insitutions, 8 pages, 4 figures. Submitted to Physical Review Letters. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Upsilon (1S+2S+3S) production in d+Au and p+p collisions at sqrt(s_NN)=200 GeV and cold-nuclear matter effects

    Full text link
    The three Upsilon states, Upsilon(1S+2S+3S), are measured in d+Au and p+p collisions at sqrt(s_NN)=200 GeV and rapidities 1.2<|y|<2.2 by the PHENIX experiment at the Relativistic Heavy-Ion Collider. Cross sections for the inclusive Upsilon(1S+2S+3S) production are obtained. The inclusive yields per binary collision for d+Au collisions relative to those in p+p collisions (R_dAu) are found to be 0.62 +/- 0.26 (stat) +/- 0.13 (syst) in the gold-going direction and 0.91 +/- 0.33 (stat) +/- 0.16 (syst) in the deuteron-going direction. The measured results are compared to a nuclear-shadowing model, EPS09 [JHEP 04, 065 (2009)], combined with a final-state breakup cross section, sigma_br, and compared to lower energy p+A results. We also compare the results to the PHENIX J/psi results [Phys. Rev. Lett. 107, 142301 (2011)]. The rapidity dependence of the observed Upsilon suppression is consistent with lower energy p+A measurements.Comment: 495 authors, 11 pages, 9 figures, 5 tables. Submitted to Phys. Rev. C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    ϕ\phi meson production in dd++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV

    Full text link
    The PHENIX experiment has measured ϕ\phi meson production in dd++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV using the dimuon and dielectron decay channels. The ϕ\phi meson is measured in the forward (backward) dd-going (Au-going) direction, 1.2<y<2.21.2<y<2.2 (2.2<y<1.2-2.2<y<-1.2) in the transverse-momentum (pTp_T) range from 1--7 GeV/cc, and at midrapidity y<0.35|y|<0.35 in the pTp_T range below 7 GeV/cc. The ϕ\phi meson invariant yields and nuclear-modification factors as a function of pTp_T, rapidity, and centrality are reported. An enhancement of ϕ\phi meson production is observed in the Au-going direction, while suppression is seen in the dd-going direction, and no modification is observed at midrapidity relative to the yield in pp++pp collisions scaled by the number of binary collisions. Similar behavior was previously observed for inclusive charged hadrons and open heavy flavor indicating similar cold-nuclear-matter effects.Comment: 484 authors, 16 pages, 12 figures, 6 tables. v1 is the version accepted for publication in Phys. Rev. C. Data tables for the points plotted in the figures are given in the paper itsel
    corecore