1,277 research outputs found

    Linearity of cortical receptive fields measured with natural sounds

    Get PDF
    How do cortical neurons represent the acoustic environment? This question is often addressed by probing with simple stimuli such as clicks or tone pips. Such stimuli have the advantage of yielding easily interpreted answers, but have the disadvantage that they may fail to uncover complex or higher-order neuronal response properties. Here, we adopt an alternative approach, probing neuronal responses with complex acoustic stimuli, including animal vocalizations. We used in vivo whole-cell methods in the rat auditory cortex to record subthreshold membrane potential fluctuations elicited by these stimuli. Most neurons responded robustly and reliably to the complex stimuli in our ensemble. Using regularization techniques, we estimated the linear component, the spectrotemporal receptive field (STRF), of the transformation from the sound (as represented by its time-varying spectrogram) to the membrane potential of the neuron. We find that the STRF has a rich dynamical structure, including excitatory regions positioned in general accord with the prediction of the classical tuning curve. However, whereas the STRF successfully predicts the responses to some of the natural stimuli, it surprisingly fails completely to predict the responses to others; on average, only 11% of the response power could be predicted by the STRF. Therefore, most of the response of the neuron cannot be predicted by the linear component, although the response is deterministically related to the stimulus. Analysis of the systematic errors of the STRF model shows that this failure cannot be attributed to simple nonlinearities such as adaptation to mean intensity, rectification, or saturation. Rather, the highly nonlinear response properties of auditory cortical neurons must be attributable to nonlinear interactions between sound frequencies and time-varying properties of the neural encoder

    Enhancement of Entanglement Percolation in Quantum Networks via Lattice Transformations

    Full text link
    We study strategies for establishing long-distance entanglement in quantum networks. Specifically, we consider networks consisting of regular lattices of nodes, in which the nearest neighbors share a pure, but non-maximally entangled pair of qubits. We look for strategies that use local operations and classical communication. We compare the classical entanglement percolation protocol, in which every network connection is converted with a certain probability to a singlet, with protocols in which classical entanglement percolation is preceded by measurements designed to transform the lattice structure in a way that enhances entanglement percolation. We analyze five examples of such comparisons between protocols and point out certain rules and regularities in their performance as a function of degree of entanglement and choice of operations.Comment: 12 pages, 17 figures, revtex4. changes from v3: minor stylistic changes for journal reviewer, minor changes to figures for journal edito

    Relationships between soil macroinvertebrates and nonnative feral pigs (Sus scrofa) in Hawaiian tropical montane wet forests

    Get PDF
    Abstract Nonnative feral pigs (Sus scrofa) are recognized throughout the New World as a highly significant introduced species in terms of ecosystem alteration. Similarly, nonnative soil macroinvertebrates (e.g. earthworms, ground beetles) invade and alter the structure and function of native habitats globally. However, the relationship between feral pigs and soil macroinvertebrates remains largely unknown. This study analyzed relationships between these taxa using nine sites located inside and outside of feral pig management units representing a * 25 year chronosequence of removal in tropical montane wet forests in Hawai‘i. Soil macroinvertebrates were sampled from plots categorized as: actively trampled by feral pigs, actively rooted by feral pigs, feral pigs present with no signs of recent activity, or feral pigs removed over time. In total, we found 13 families of primarily nonnative soil macroinvertebrates. Plots with active trampling correlated with lower total macroinvertebrate abundance, biomass, and family richness. Plots with active rooting were correlated with higher abundance of nonnative earthworms (Lumbricidae and Megascolicidae) and ground beetles (Carabidae). The abundance, biomass, and biodiversity of macroinvertebrates did not vary with time since feral pig removal. Collectively, these results indicate: (1) trampling by feral pigs negatively influences soil macroinvertebrates; (2) feral pigs either modify habitats while rooting thereby facilitating earthworm and ground beetle habitat use or selectively seek out target prey species of soil macroinvertebrates; and (3) removal of feral pigs has minimal impacts on soil macroinvertebrates over time. These results are important globally due to the broadly overlapping ranges of S. scrofa and nonnative macroinvertebrates

    Imaging and photogrammetry models of Olduvai Gorge (Tanzania) by Unmanned Aerial Vehicles: A high-resolution digital database for research and conservation of Early Stone Age sites

    Get PDF
    This paper presents the first aerial mapping of Olduvai Gorge (Tanzania) using Unmanned Aerial Vehicles and photogrammetric techniques, to provide a detailed digital cartographic basis for this world-renowned paleoanthropological site. The survey covered an area of 32 km2 of Olduvai Gorge, and through the use of aerial photos and ground control points from Global Navigation Satellite Systems, an orthomosaic and Digital Surface Model, with a higher than 5 cm/pixel ground resolution, were produced. The Digital Surface Model was then denoised to calculate a Digital Elevation Model, and a high-resolution imaging model of Olduvai Gorge was generated. A preliminary morphometric characterization using Geographic Information Systems shows the potential of this approach when analysing multiple topographic variables in large areas of paleoanthropological relevance, including production of a new map template for Olduvai Gorge and new data for the investigation of sedimentary and tectonic processes. These results constitute one of the first attempts to obtain high quality imagery from large geographic areas amenable to Early Stone Age research, and introduce new workflows for the creation of Digital Elevation Models. Overall, the digital dataset produced is intended to support archaeological and geological investigation in this area, and provide new monitoring tools for the conservation of cultural heritage

    Site formation processes of the early Acheulean assemblage at EF-HR (Olduvai Gorge, Tanzania)

    Get PDF
    This paper investigates the formation history of the early Acheulean site of EF-HR (Olduvai Gorge, Tanzania). Our study focuses on the main site (T2-Main Trench) and adjacent trenches (T12 and T9), which constitute the bulk of the archaeological assemblage recently excavated in the EF-HR area (de la Torre et al., submitted). Site formation processes are investigated through taphonomic proxies and spatial analysis, and consider artifact features, orientation patterns, and topographic data retrieved during archaeological excavation. This enables an assessment of the impact of natural agents on the assemblage and a discussion of the relevance of water disturbance in shaping the structure of the EF-HR archaeological record. Our results indicate that fluvial action over the assemblage was significant, although it is likely that EF-HR still preserves areas marginally affected by water sorting and rearrangement. In summary, by applying a novel approach that combines a systematic analysis of artifact attributes with GIS spatial analysis of archaeological remains and topographic features, our study aims to provide a fresh look at the interaction of human and natural agents in the formation of Early Stone Age assemblages at Olduvai Gorge

    Survey and Digital Documentation of Endangered Temple Wall Paintings in Shanxi Province, China

    Get PDF
    Shanxi Province is at the heart of China, and home to some of its richest architectural heritage. Covering an area of 156,000 square kilometres the Province is larger than England and Wales combined. Many earthen and timber buildings and temples contain wall paintings, witnessing Chinese folk religion, Buddhist and Daoist beliefs. Scattered over a large geographic area these remote village temples present a fairyland of Chinese traditional folklore. Many of these sites are endangered, and most are unrecorded. Funded by Arcadia, a charitable trust fund of Lisbet Rausing and Peter Baldwin, the Shanxi Digital Documentation of Endangered Temple Wall Painting Project (SDDP) is a four-year programme (2018–2021) aimed at recording these historic temples and wall paintings using high-resolution photographic and three-dimensional photogrammetric techniques, and also including selective capture of multi-spectral imagery. These records will form an open-access digital archive of temple paintings and associated architecture, structured by a Chinese-English bilingual database. The SDDP is a partnership between Zhejiang University, Shanxi Institute of Architecture Conservation and University College London (represented by two research centres within the Institute of Archaeology: the International Centre for Chinese Heritage and Archaeology and the Centre for Applied Archaeology). The programme of survey and research is guided by the Shanxi Provincial Bureau of Cultural Heritage (SBCH) and an international advisory board

    Disorder-induced phase control in superfluid fermi-bose mixtures

    Get PDF
    Abstract -We consider a mixture of a superfluid Fermi gas of ultracold atoms and a BoseEinstein condensate of molecules possessing a continuous U (1) (relative phase) symmetry. We study the effects of a spatially random photo-associative-dissociative symmetry-breaking coupling of the systems. Such coupling allows one to control the relative phase between a superfluid order parameter of the Fermi system and the condensate wave function of molecules for temperatures below the Bardeen-Cooper-Schriefer critical temperature. The presented mechanism of phase control belongs to the general class of phenomena in which disorder interacts with continuous symmetry. Our results show the robustness and wide range of applicability of disorder-induced order and are valid for both disordered and regular couplings. Here, the effect is studied in the case of interacting fermionic and bosonic gases in the superfluid phase

    Ergodic properties of a model for turbulent dispersion of inertial particles

    Full text link
    We study a simple stochastic differential equation that models the dispersion of close heavy particles moving in a turbulent flow. In one and two dimensions, the model is closely related to the one-dimensional stationary Schroedinger equation in a random delta-correlated potential. The ergodic properties of the dispersion process are investigated by proving that its generator is hypoelliptic and using control theory
    corecore