We study strategies for establishing long-distance entanglement in quantum
networks. Specifically, we consider networks consisting of regular lattices of
nodes, in which the nearest neighbors share a pure, but non-maximally entangled
pair of qubits. We look for strategies that use local operations and classical
communication. We compare the classical entanglement percolation protocol, in
which every network connection is converted with a certain probability to a
singlet, with protocols in which classical entanglement percolation is preceded
by measurements designed to transform the lattice structure in a way that
enhances entanglement percolation. We analyze five examples of such comparisons
between protocols and point out certain rules and regularities in their
performance as a function of degree of entanglement and choice of operations.Comment: 12 pages, 17 figures, revtex4. changes from v3: minor stylistic
changes for journal reviewer, minor changes to figures for journal edito