92 research outputs found
A Study of Muon Neutrino Disappearance Using the Fermilab Main Injector Neutrino Beam
We report the results of a search for muon-neutrino disappearance by the Main
Injector Neutrino Oscillation Search. The experiment uses two detectors
separated by 734 km to observe a beam of neutrinos created by the Neutrinos at
the Main Injector facility at Fermi National Accelerator Laboratory. The data
were collected in the first 282 days of beam operations and correspond to an
exposure of 1.27e20 protons on target. Based on measurements in the Near
Detector, in the absence of neutrino oscillations we expected 336 +/- 14
muon-neutrino charged-current interactions at the Far Detector but observed
215. This deficit of events corresponds to a significance of 5.2 standard
deviations. The deficit is energy dependent and is consistent with two-flavor
neutrino oscillations according to delta m-squared = 2.74e-3 +0.44/-0.26e-3
eV^2 and sin^2(2 theta) > 0.87 at 68% confidence level.Comment: In submission to Phys. Rev.
Measurement of the Atmospheric Muon Charge Ratio at TeV Energies with MINOS
The 5.4 kton MINOS far detector has been taking charge-separated cosmic ray
muon data since the beginning of August, 2003 at a depth of 2070
meters-water-equivalent in the Soudan Underground Laboratory, Minnesota, USA.
The data with both forward and reversed magnetic field running configurations
were combined to minimize systematic errors in the determination of the
underground muon charge ratio. When averaged, two independent analyses find the
charge ratio underground to be 1.374 +/- 0.004 (stat.) +0.012 -0.010(sys.).
Using the map of the Soudan rock overburden, the muon momenta as measured
underground were projected to the corresponding values at the surface in the
energy range 1-7 TeV. Within this range of energies at the surface, the MINOS
data are consistent with the charge ratio being energy independent at the two
standard deviation level. When the MINOS results are compared with measurements
at lower energies, a clear rise in the charge ratio in the energy range 0.3 --
1.0 TeV is apparent. A qualitative model shows that the rise is consistent with
an increasing contribution of kaon decays to the muon charge ratio.Comment: 16 pages, 17 figure
Measurement of neutrino velocity with the MINOS detectors and NuMI neutrino beam
The velocity of a ~3 GeV neutrino beam is measured by comparing detection times at the near and far detectors of the MINOS experiment, separated by 734 km. A total of 473 far detector neutrino events was used to measure (v-c)/c=5.12.910-5 (at 68% C.L.). By correlating the measured energies of 258 charged-current neutrino events to their arrival times at the far detector, a limit is imposed on the neutrino mass of mnu<50 MeV/c2 (99% C.L.)
Testing Lorentz Invariance and CPT Conservation with NuMI Neutrinos in the MINOS Near Detector
A search for a sidereal modulation in the MINOS near detector neutrino data
was performed. If present, this signature could be a consequence of Lorentz and
CPT violation as predicted by a class of extensions to the Standard Model. No
evidence for a sidereal signal in the data set was found, implying that there
is no significant change in neutrino propagation that depends on the direction
of the neutrino beam in a sun-centered inertial frame. Upper limits on the
magnitudes of the Lorentz and CPT violating terms in these extensions to the
Standard Model lie between 0.01-1% of the maximum expected, assuming a
suppression of these signatures by factor of .
First observations of separated atmospheric nu_mu and bar{nu-mu} events in the MINOS detector
The complete 5.4 kton MINOS far detector has been taking data since the beginning of August 2003 at a depth of 2070 meters water-equivalent in the Soudan mine, Minnesota. This paper presents the first MINOS observations of nuµ and [overline nu ]µ charged-current atmospheric neutrino interactions based on an exposure of 418 days. The ratio of upward- to downward-going events in the data is compared to the Monte Carlo expectation in the absence of neutrino oscillations, giving Rup/downdata/Rup/downMC=0.62-0.14+0.19(stat.)±0.02(sys.). An extended maximum likelihood analysis of the observed L/E distributions excludes the null hypothesis of no neutrino oscillations at the 98% confidence level. Using the curvature of the observed muons in the 1.3 T MINOS magnetic field nuµ and [overline nu ]µ interactions are separated. The ratio of [overline nu ]µ to nuµ events in the data is compared to the Monte Carlo expectation assuming neutrinos and antineutrinos oscillate in the same manner, giving R[overline nu ][sub mu]/nu[sub mu]data/R[overline nu ][sub mu]/nu[sub mu]MC=0.96-0.27+0.38(stat.)±0.15(sys.), where the errors are the statistical and systematic uncertainties. Although the statistics are limited, this is the first direct observation of atmospheric neutrino interactions separately for nuµ and [overline nu ]µ
First measurement of muon-neutrino disappearance in NOvA
This paper reports the first measurement using the NOvA detectors of νμ disappearance in a νμ beam. The analysis uses a 14 kton-equivalent exposure of 2.74×1020 protons-on-target from the Fermilab NuMI beam. Assuming the normal neutrino mass hierarchy, we measure Δm232=(2.52+0.20−0.18)×10−3 eV2 and sin2θ23 in the range 0.38–0.65, both at the 68% confidence level, with two statistically degenerate best-fit points at sin2θ23=0.43 and 0.60. Results for the inverted mass hierarchy are also presented
First measurement of electron neutrino appearance in NOvA
We report results from the first search for νμ→νe transitions by the NOvA experiment. In an exposure equivalent to 2.74×1020 protons on target in the upgraded NuMI beam at Fermilab, we observe 6 events in the Far Detector, compared to a background expectation of 0.99±0.11(syst) events based on the Near Detector measurement. A secondary analysis observes 11 events with a background of 1.07±0.14(syst). The 3.3σ excess of events observed in the primary analysis disfavors 0.1π<δCP<0.5π in the inverted mass hierarchy at the 90% C.L
Measurement of Neutrino Oscillations with the MINOS Detectors in the NuMI Beam
This letter reports new results from the MINOS experiment based on a two-year
exposure to muon neutrinos from the Fermilab NuMI beam. Our data are consistent
with quantum mechanical oscillations of neutrino flavor with mass splitting
eV (68% confidence level) and
mixing angle (90% confidence level). Our data disfavor
two alternative explanations for the disappearance of neutrinos in flight,
namely neutrino decays into lighter particles and quantum decoherence of
neutrinos, at the 3.7 and 5.7 standard deviation levels, respectively.Comment: 5 pages, 4 figures, submitted to Phys. Rev. Let
- …