168 research outputs found

    Pedestrian index theorem a la Aharonov-Casher for bulk threshold modes in corrugated multilayer graphene

    Full text link
    Zero-modes, their topological degeneracy and relation to index theorems have attracted attention in the study of single- and bilayer graphene. For negligible scalar potentials, index theorems explain why the degeneracy of the zero-energy Landau level of a Dirac hamiltonian is not lifted by gauge field disorder, for example due to ripples, whereas other Landau levels become broadened by the inhomogenous effective magnetic field. That also the bilayer hamiltonian supports such protected bulk zero-modes was proved formally by Katsnelson and Prokhorova to hold on a compact manifold by using the Atiyah-Singer index theorem. Here we complement and generalize this result in a pedestrian way by pointing out that the simple argument by Aharonov and Casher for degenerate zero-modes of a Dirac hamiltonian in the infinite plane extends naturally to the multilayer case. The degeneracy remains, though at nonzero energy, also in the presence of a gap. These threshold modes make the spectrum asymmetric. The rest of the spectrum, however, remains symmetric even in arbitrary gauge fields, a fact related to supersymmetry. Possible benefits of this connection are discussed.Comment: 6 pages, 2 figures. The second version states now also in words that the conjugation symmetry that in the massive case gets replaced by supersymmetry is the chiral symmetry. Changes in figure

    Visible-Light-Driven Halide Oxidation in Organic Solvents by Cationic Transition Metal Complexes

    Get PDF
    Solar energy could be a promising renewable energy source, but as variations in sunlight and the diurnal rhythm affect the number of photons readily available at any time, the storage of solar energy is of great importance. An attractive way to remediate this concern is to “store” the solar energy in the smallest volume, i.e. in chemical bonds. For example, hydrohalic acid (HX) splitting yields hydrogen gas (H2) and the corresponding halogen (X2) that can both be stored as solar fuels and recombined when needed in a classic fuel cell. This dissertation will focus on the fundamental study of molecular excited states generated by visible light and how their excited-state reactivity can trigger halide oxidation and initiate covalent bond formation. Throughout this dissertation, fundamental details related to the photophysical properties of molecular sensitizers and their photochemical reactivity will be discussed. In Chapter 2, fundamental photophysical and photochemical properties of ruthenium photosensitizers and how these are affected by organic solvents or ion-pairing with chloride are detailed. The focus of Chapter 3 is related to the photooxidation of chloride by molecular excited-states where the data present compelling evidence for chloride oxidation to the chloride atom by a one-electron transfer mechanism. In Chapter 4, an in-depth analysis of the effect of ion-pairing on the iodide oxidation mechanism is performed. Here, a novel intra-ionic mechanism is described, where the substitution pattern of the photosensitizers was found to tune the rate of diiodide bond formation. Osmium photosensitizers are introduced in Chapter 5 in an effort to further understand the effects of excited-state dipole orientation on the different iodide oxidation mechanisms. Finally, Chapter 6 explores chloride, bromide and chloride oxidation by iridium sensitizers in six organic solvents. Additionally, this chapter describes in detail the method used in this work to estimate the one electron halogen reduction potential in six organic solvents as well as in water.Doctor of Philosoph

    Two-photon spectroscopy of tungsten(0) arylisocyanides using nanosecond-pulsed excitation

    Get PDF
    The two-photon absorption (TPA) cross sections (δ) for tungsten(0) arylisocyanides (W(CNAr)6) were determined in the 800–1000 nm region using two-photon luminescence (TPL) spectroscopy. The complexes have high TPA cross sections, in the range 1000–2000 GM at 811.8 nm. In comparison, the cross section at 811.8 nm for tris-(2,2′-bipyridine)ruthenium(II), [Ru(bpy)_3]^(2+), is 7 GM. All measurements were performed using a nanosecond-pulsed laser system

    Importance of the Active Site "Canopy" Residues in an O_2-Tolerant [NiFe]-Hydrogenase

    Get PDF
    The active site of Hyd-1, an oxygen-tolerant membrane-bound [NiFe]-hydrogenase from Escherichia coli, contains four highly conserved residues that form a “canopy” above the bimetallic center, closest to the site at which exogenous agents CO and O_2 interact, substrate H_2 binds, and a hydrido intermediate is stabilized. Genetic modification of the Hyd-1 canopy has allowed the first systematic and detailed kinetic and structural investigation of the influence of the immediate outer coordination shell on H_2 activation. The central canopy residue, arginine 509, suspends a guanidine/guanidinium side chain at close range above the open coordination site lying between the Ni and Fe atoms (N–metal distance of 4.4 Å): its replacement with lysine lowers the H_2 oxidation rate by nearly 2 orders of magnitude and markedly decreases the H_2/D_2 kinetic isotope effect. Importantly, this collapse in rate constant can now be ascribed to a very unfavorable activation entropy (easily overriding the more favorable activation enthalpy of the R509K variant). The second most important canopy residue for H_2 oxidation is aspartate 118, which forms a salt bridge to the arginine 509 headgroup: its mutation to alanine greatly decreases the H_2 oxidation efficiency, observed as a 10-fold increase in the potential-dependent Michaelis constant. Mutations of aspartate 574 (also salt-bridged to R509) to asparagine and proline 508 to alanine have much smaller effects on kinetic properties. None of the mutations significantly increase sensitivity to CO, but neutralizing the expected negative charges from D118 and D574 decreases O_2 tolerance by stabilizing the oxidized resting Ni^(III)–OH state (“Ni-B”). An extensive model of the catalytic importance of residues close to the active site now emerges, whereby a conserved gas channel culminates in the arginine headgroup suspended above the Ni and Fe

    CD62L (L-selectin) shedding for assessment of perioperative immune sensitivity in patients undergoing cardiac surgery with cardiopulmonary bypass

    Get PDF
    OBJECTIVE: To investigate the suitability of blood granulocyte and monocyte sensitivity, as measured by the quantity of different agonists required to induce CD62L shedding, for assessment of perioperative immune changes in patients undergoing cardiac surgery with cardiopulmonary bypass. METHODS: Patients scheduled for aortocoronary bypass grafting or for valve surgery were included in this prospective observational study. Blood samples were drawn before anesthesia induction, directly after surgery and 48 hours after anesthesia induction. We determined the concentration of two different inflammatory stimuli--lipoteichoic acid (LTA) and tumor necrosis factor alpha (TNF)--required to induce shedding of 50% of surface CD62L from blood granulocytes and monocytes. In parallel monocyte surface human leukocyte antigen (HLA)-DR, and plasma interleukin (IL)-8, soluble (s)CD62L, soluble (s)Toll-like receptor (TLR)-2 and ADAM17 quantification were used to illustrate perioperative immunomodulation. RESULTS: 25 patients were enrolled. Blood granulocytes and monocytes showed decreased sensitivity to the TLR 2/6 agonist Staphylococcus aureus LTA immediately after surgery (p = 0.001 and p = 0.004 respectively). In contrast, granulocytes (p = 0.01), but not monocytes (p = 0.057) displayed a decreased postoperative sensitivity to TNF. We confirmed the presence of a systemic inflammatory response and a decreased immune sensitivity in the post-surgical period by measuring significant increases in the perioperative plasma concentration of IL-8 (p </= 0.001) and sTLR (p = 0.004), and decreases in monocyte HLA-DR (p<0.001), plasma sCD62L (p </= 0.001). In contrast, ADAM17 plasma levels did not show significant differences over the observation period (p = 0.401). CONCLUSIONS: Monitoring granulocyte and monocyte sensitivity using the "CD62L shedding assay" in the perioperative period in cardiac surgical patients treated with the use of cardiopulmonary bypass reveals common changes in sensitivity to TLR2/6 ligands and to TNF stimulus. Further long-term follow-up studies will address the predictive value of these observations for clinical purposes

    Hydrogen activation by [NiFe]-hydrogenases

    Get PDF
    Hydrogenase-1 (Hyd-1) from Escherichia coli is a membrane-bound enzyme that catalyses the reversible oxidation of molecular H2 The active site contains one Fe and one Ni atom and several conserved amino acids including an arginine (Arg(509)), which interacts with two conserved aspartate residues (Asp(118) and Asp(574)) forming an outer shell canopy over the metals. There is also a highly conserved glutamate (Glu(28)) positioned on the opposite side of the active site to the canopy. The mechanism of hydrogen activation has been dissected by site-directed mutagenesis to identify the catalytic base responsible for splitting molecular hydrogen and possible proton transfer pathways to/from the active site. Previous reported attempts to mutate residues in the canopy were unsuccessful, leading to an assumption of a purely structural role. Recent discoveries, however, suggest a catalytic requirement, for example replacing the arginine with lysine (R509K) leaves the structure virtually unchanged, but catalytic activity falls by more than 100-fold. Variants containing amino acid substitutions at either or both, aspartates retain significant activity. We now propose a new mechanism: heterolytic H2 cleavage is via a mechanism akin to that of a frustrated Lewis pair (FLP), where H2 is polarized by simultaneous binding to the metal(s) (the acid) and a nitrogen from Arg(509) (the base)
    • …
    corecore