349 research outputs found

    Functional expression of PHO1 to the Golgi and trans-Golgi network and its role in export of inorganic phosphate.

    Get PDF
    Arabidopsis thaliana PHO1 is primarily expressed in the root vascular cylinder and is involved in the transfer of inorganic phosphate (Pi) from roots to shoots. To analyze the role of PHO1 in transport of Pi, we have generated transgenic plants expressing PHO1 in ectopic A. thaliana tissues using an estradiol-inducible promoter. Leaves treated with estradiol showed strong PHO1 expression, leading to detectable accumulation of PHO1 protein. Estradiol-mediated induction of PHO1 in leaves from soil-grown plants, in leaves and roots of plants grown in liquid culture, or in leaf mesophyll protoplasts, was all accompanied by the specific release of Pi to the extracellular medium as early as 2-3 h after addition of estradiol. Net Pi export triggered by PHO1 induction was enhanced by high extracellular Pi and weakly inhibited by the proton-ionophore carbonyl cyanide m-chlorophenylhydrazone. Expression of a PHO1-GFP construct complementing the pho1 mutant revealed GFP expression in punctate structures in the pericycle cells but no fluorescence at the plasma membrane. When expressed in onion epidermal cells or in tobacco mesophyll cells, PHO1-GFP was associated with similar punctate structures that co-localized with the Golgi/trans-Golgi network and uncharacterized vesicles. However, PHO1-GFP could be partially relocated to the plasma membrane in leaves infiltrated with a high-phosphate solution. Together, these results show that PHO1 can trigger Pi export in ectopic plant cells, strongly indicating that PHO1 is itself a Pi exporter. Interestingly, PHO1-mediated Pi export was associated with its localization to the Golgi and trans-Golgi networks, revealing a role for these organelles in Pi transport

    Coordination between zinc and phosphate homeostasis involves the transcription factor PHR1, the phosphate exporter PHO1, and its homologue PHO1;H3 in Arabidopsis.

    Get PDF
    Interactions between zinc (Zn) and phosphate (Pi) nutrition in plants have long been recognized, but little information is available on their molecular bases and biological significance. This work aimed at examining the effects of Zn deficiency on Pi accumulation in Arabidopsis thaliana and uncovering genes involved in the Zn-Pi synergy. Wild-type plants as well as mutants affected in Pi signalling and transport genes, namely the transcription factor PHR1, the E2-conjugase PHO2, and the Pi exporter PHO1, were examined. Zn deficiency caused an increase in shoot Pi content in the wild type as well as in the pho2 mutant, but not in the phr1 or pho1 mutants. This indicated that PHR1 and PHO1 participate in the coregulation of Zn and Pi homeostasis. Zn deprivation had a very limited effect on transcript levels of Pi-starvation-responsive genes such as AT4, IPS1, and microRNA399, or on of members of the high-affinity Pi transporter family PHT1. Interestingly, one of the PHO1 homologues, PHO1;H3, was upregulated in response to Zn deficiency. The expression pattern of PHO1 and PHO1;H3 were similar, both being expressed in cells of the root vascular cylinder and both localized to the Golgi when expressed transiently in tobacco cells. When grown in Zn-free medium, pho1;h3 mutant plants displayed higher Pi contents in the shoots than wild-type plants. This was, however, not observed in a pho1 pho1;h3 double mutant, suggesting that PHO1;H3 restricts root-to-shoot Pi transfer requiring PHO1 function for Pi homeostasis in response to Zn deficiency

    Electroless synthesis of 3nm wide alloy nanowires inside Tobacco mosaic virus

    Get PDF
    We show that 3nm wide cobaltiron alloy nanowires can be synthesized by simple wet chemical electroless deposition inside tubular Tobacco mosaic virus particles. The method is based on adsorption of Pd(II) ions, formation of a Pd catalyst, and autocatalytic deposition of the alloy from dissolved metal salts, reduced by a borane compound. Extensive energy-filtering TEM investigations at the nanoscale revealed that the synthesized wires are alloys of Co, Fe, and Ni. We confirmed by high-resolution TEM that our alloy nanowires are at least partially crystalline, which is compatible with typical Co-rich alloys. Ni traces bestow higher stability, presumably against corrosion, as also known from bulk CoFe. Alloy nanowires, as small as the ones presented here, might be used for a variety of applications including high density data storage, imaging, sensing, and even drug delivery. © 2012 IOP Publishing Ltd

    Reproducibility of pulmonary magnetic resonance angiography in adults with muco-obstructive pulmonary disease

    Get PDF
    Background Recent studies support magnetic resonance angiography (MRA) as a diagnostic tool for pulmonary arterial disease. Purpose To determine MRA image quality and reproducibility, and the dependence of MRA image quality and reproducibility on disease severity in patients with chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF). Material and Methods Twenty patients with COPD (mean age 66.5 ± 8.9 years; FEV1% = 42.0 ± 13.3%) and 15 with CF (mean age 29.3 ± 9.3 years; FEV1% = 66.6 ± 15.8%) underwent morpho-functional chest magnetic resonance imaging (MRI) including time-resolved MRA twice one month apart (MRI1, MRI2), and COPD patients underwent non-contrast computed tomography (CT). Image quality was assessed visually using standardized subjective 5-point scales. Contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) were measured by regions of interest. Disease severity was determined by spirometry, a well-evaluated chest MRI score, and by computational CT emphysema index (EI) for COPD. Results Subjective image quality was diagnostic for all MRA at MRI1 and MRI2 (mean score = 4.7 ± 0.6). CNR and SNR were 4 43.8 ± 8.7 and 50.5 ± 8.7, respectively. Neither image quality score nor CNR or SNR correlated with FEV1% or chest MRI score for COPD and CF (r = 0.239–0.248). CNR and SNR did not change from MRI1 to MRI2 (P = 0.434–0.995). Further, insignificant differences in CNR and SNR between MRA at MRI1 and MRI2 did not correlate with FEV1% nor chest MRI score in COPD and CF (r = −0.238–0.183), nor with EI in COPD (r = 0.100–0.111). Conclusion MRA achieved diagnostic quality in COPD and CF patients and was highly reproducible irrespective of disease severity. This supports MRA as a robust alternative to CT in patients with underlying muco-obstructive lung disease

    An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core

    Get PDF
    Silver nanoparticles have antibacterial properties, but their use has been a cause for concern because they persist in the environment. Here, we show that lignin nanoparticles infused with silver ions and coated with a cationic polyelectrolyte layer form a biodegradable and green alternative to silver nanoparticles. The polyelectrolyte layer promotes the adhesion of the particles to bacterial cell membranes and, together with silver ions, can kill a broad spectrum of bacteria, including Escherichia coli, Pseudomonas aeruginosa and quaternary-amine-resistant Ralstonia sp. Ion depletion studies have shown that the bioactivity of these nanoparticles is time-limited because of the desorption of silver ions. High-throughput bioactivity screening did not reveal increased toxicity of the particles when compared to an equivalent mass of metallic silver nanoparticles or silver nitrate solution. Our results demonstrate that the application of green chemistry principles may allow the synthesis of nanoparticles with biodegradable cores that have higher antimicrobial activity and smaller environmental impact than metallic silver nanoparticles

    A vast icefish breeding colony discovered in the Antarctic

    Get PDF
    A breeding colony of notothenioid icefish (Neopagetopsis ionah, Nybelin 1947) of globally unprecedented extent has been discovered in the southern Weddell Sea, Antarctica. The colony was estimated to cover at least similar to 240 km(2) of the eastern flank of the Filchner Trough, comprised of fish nests at a density of 0.26 nests per square meter, representing an estimated total of -60 million active nests and associated fish biomass of >60,000 tonnes. The majority of nests were each occupied by 1 adult fish guarding 1,735 eggs (+/- 433 SD). Bottom water temperatures measured across the nesting colony were up to 2 degrees C warmer than the surrounding bottom waters, indicating a spatial correlation between the modified Warm Deep Water (mWDW) upflow onto the Weddell Shelf and the active nesting area. Historical and concurrently collected seal movement data indicate that this concentrated fish biomass may be utilized by predators such as Weddell seals (Leptonychotes weddellii, Lesson 1826). Numerous degraded fish carcasses within and near the nesting colony suggest that, in death as well as life, these fish provide input for local food webs and influence local biogeochemical processing. To our knowledge, the area surveyed harbors the most spatially expansive continuous fish breeding colony discovered to date globally at any depth, as well as an exceptionally high Antarctic seafloor biomass. This discovery provides support for the establishment of a regional marine protected area in the Southern Ocean under the Convention on the Conservation of Antarctic Marine Living Resources (CCAMLR) umbrella

    Modified TMV particles as beneficial scaffolds to present sensor enzymes

    Get PDF
    Tobacco mosaic virus (TMV) is a robust nanotubular nucleoprotein scaffold increasingly employed for the high density presentation of functional molecules such as peptides, fluorescent dyes, and antibodies. We report on ist use as advantageous carrier for sensor enzymes. ATMV mutant with a cysteine residue exposed on every coat protein (CP) subunit (TMVCys_{Cys}) enabled the coupling of bifunctional maleimide-polyethylene glycol (PEG)-biotin linkers (TMVCys_{Cys}/Bio). Its surface was equipped with two streptavidin [SA]-conjugated enzymes: glucose oxidase ([SA]-GOx) and horseradish peroxidase ([SA]-HRP). At least 50% of the CPs were decorated with a linker molecule, and all thereof with active enzymes. Upon use as adapter scaffolds in conventional “high-binding” microtiter plates, TMV sticks allowed the immobilization of up to 45-fold higher catalytic activities than control samples with the same input of enzymes. Moreover, they increased storage stability and reusability in relation to enzymes applied directly to microtiter plate wells. The functionalized TMV adsorbed to solid supports showed a homogeneous distribution of the conjugated enzymes and structural integrity of the nanorods upon transmission electron and atomic force microscopy. The high surface-increase and steric accessibility of the viral scaffolds in combination with the biochemical environment provided by the plant viral coat may explain the beneficial effects. TMV can, thus, serve as a favorable multivalent nanoscale platform for the ordered presentation of bioactive proteins

    The Equilibria of Lipid–K+ Ions in Monolayer at the Air/Water Interface

    Get PDF
    The effect of K+ ion interaction with monolayers of phosphatidylcholine (lecithin, PC) or cholesterol (Ch) was investigated at the air/water interface. We present surface tension measurements of lipid monolayers obtained using a Langmuir method as a function of K+ ion concentration. Measurements were carried out at 22°C using a Teflon trough and a Nima 9000 tensiometer. Interactions between lecithin and K+ ions or Ch and K+ ions result in significant deviations from the additivity rule. An equilibrium theory to describe the behavior of monolayer components at the air/water interface was developed in order to obtain the stability constants and area occupied by one molecule of lipid–K+ ion complex (LK+). The stability constants for lecithin–K+ ion (PCK+) complex, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}KPCK+=3.26×102dm3 mol−1 K_{{{\text{PCK}}^{ + } }} = { 3}. 2 6\times 10^{ 2} {\text{dm}}^{ 3} \,{\text{mol}}^{ - 1} \end{document}, and for cholesterol–K+ ion (ChK+) complex, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}KChK+=1.00×103dm3 mol−1 K_{{{\text{ChK}}^{ + } }} = { 1}.00 \times 10^{ 3} {\text{dm}}^{ 3} \,{\text{mol}}^{ - 1} \end{document}, were calculated by inserting the experimental data. The value of area occupied by one PCK+ complex is 60 Å2 molecule−1, while the area occupied by one ChK+ complex is 40.9 Å2 molecule−1. The complex formation energy (Gibbs free energy) values for the PCK+ and ChK+ complexes are −14.18 ± 0.71 and −16.92 ± 0.85 kJ mol−1, respectively
    • 

    corecore