90 research outputs found
A two-mass expanding exact space-time solution
In order to understand how locally static configurations around
gravitationally bound bodies can be embedded in an expanding universe, we
investigate the solutions of general relativity describing a space-time whose
spatial sections have the topology of a 3-sphere with two identical masses at
the poles. We show that Israel junction conditions imply that two spherically
symmetric static regions around the masses cannot be glued together. If one is
interested in an exterior solution, this prevents the geometry around the
masses to be of the Schwarzschild type and leads to the introduction of a
cosmological constant. The study of the extension of the Kottler space-time
shows that there exists a non-static solution consisting of two static regions
surrounding the masses that match a Kantowski-Sachs expanding region on the
cosmological horizon. The comparison with a Swiss-Cheese construction is also
discussed.Comment: 15 pages, 5 figures. Replaced to match the published versio
Jamming at Zero Temperature and Zero Applied Stress: the Epitome of Disorder
We have studied how 2- and 3- dimensional systems made up of particles
interacting with finite range, repulsive potentials jam (i.e., develop a yield
stress in a disordered state) at zero temperature and applied stress. For each
configuration, there is a unique jamming threshold, , at which
particles can no longer avoid each other and the bulk and shear moduli
simultaneously become non-zero. The distribution of values becomes
narrower as the system size increases, so that essentially all configurations
jam at the same in the thermodynamic limit. This packing fraction
corresponds to the previously measured value for random close-packing. In fact,
our results provide a well-defined meaning for "random close-packing" in terms
of the fraction of all phase space with inherent structures that jam. The
jamming threshold, Point J, occurring at zero temperature and applied stress
and at the random close-packing density, has properties reminiscent of an
ordinary critical point. As Point J is approached from higher packing
fractions, power-law scaling is found for many quantities. Moreover, near Point
J, certain quantities no longer self-average, suggesting the existence of a
length scale that diverges at J. However, Point J also differs from an ordinary
critical point: the scaling exponents do not depend on dimension but do depend
on the interparticle potential. Finally, as Point J is approached from high
packing fractions, the density of vibrational states develops a large excess of
low-frequency modes. All of these results suggest that Point J may control
behavior in its vicinity-perhaps even at the glass transition.Comment: 21 pages, 20 figure
Mendelian randomization supports bidirectional causality between telomere length and clonal hematopoiesis of indeterminate potential
Human genetic studies support an inverse causal relationship between leukocyte telomere length (LTL) and coronary artery disease (CAD), but directionally mixed effects for LTL and diverse malignancies. Clonal hematopoiesis of indeterminate potential (CHIP), characterized by expansion of hematopoietic cells bearing leukemogenic mutations, predisposes both hematologic malignancy and CAD. TERT (which encodes telomerase reverse transcriptase) is the most significantly associated germline locus for CHIP in genome-wide association studies. Here, we investigated the relationship between CHIP, LTL, and CAD in the Trans-Omics for Precision Medicine (TOPMed) program (n = 63,302) and UK Biobank (n = 47,080). Bidirectional Mendelian randomization studies were consistent with longer genetically imputed LTL increasing propensity to develop CHIP, but CHIP then, in turn, hastens to shorten measured LTL (mLTL). We also demonstrated evidence of modest mediation between CHIP and CAD by mLTL. Our data promote an understanding of potential causal relationships across CHIP and LTL toward prevention of CAD
Genetic determinants of telomere length from 109,122 ancestrally diverse whole-genome sequences in TOPMed
Genetic studies on telomere length are important for understanding age-related diseases. Prior GWASs for leukocyte TL have been limited to European and Asian populations. Here, we report the first sequencing-based association study for TL across ancestrally diverse individuals (European, African, Asian, and Hispanic/Latino) from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. We used whole-genome sequencing (WGS) of whole blood for variant genotype calling and the bioinformatic estimation of telomere length in n = 109,122 individuals. We identified 59 sentinel variants (p < 5 × 10−9) in 36 loci associated with telomere length, including 20 newly associated loci (13 were replicated in external datasets). There was little evidence of effect size heterogeneity across populations. Fine-mapping at OBFC1 indicated that the independent signals colocalized with cell-type-specific eQTLs for OBFC1 (STN1). Using a multi-variant gene-based approach, we identified two genes newly implicated in telomere length, DCLRE1B (SNM1B) and PARN. In PheWAS, we demonstrated that our TL polygenic trait scores (PTSs) were associated with an increased risk of cancer-related phenotypes
Screenshot from Utah COVID-19 memorial website
"This is a portrait memorial for Utah's victims of covid-19 which includes hand drawn portraits and links to life stories and obituaries.
Distinct roles for TBP and TBP-like factor in early embryonic gene transcription in Xenopus.
Contains fulltext :
129326.pdf (publisher's version ) (Closed access)The TATA-binding protein (TBP) is believed to function as a key component of the general transcription machinery. We tested the role of TBP during the onset of embryonic transcription by antisense oligonucleotide-mediated turnover of maternal TBP messenger RNA. Embryos without detectable TBP initiated gastrulation but died before completing gastrulation. The expression of many genes transcribed by RNA polymerase II and III was reduced; however, some genes were transcribed with an efficiency identical to that of TBP-containing embryos. Using a similar antisense strategy, we found that the TBP-like factor TLF/TRF2 is essential for development past the mid-blastula stage. Because TBP and a TLF factor play complementary roles in embryonic development, our results indicate that although similar mechanistic roles exist in common, TBP and TLF function differentially to control transcription of specific genes
THE INFLUENCE OF MELTING CONDITION ON THE RADIATION SENSITIVITY OF GeO2 GLASS
On étudie l'influence de la température de fusion et de la vitesse de trempe sur la concentration des centres E1 dans GeO2 vitreux utilisant RPE et des méthodes optiques.Effects of the fusion temperature and cooling rate on the concentration of the E1 centers in GeO2 glass are studied using EPR and optical methods
- …