146 research outputs found

    Large-scale proteomic analysis of T. spiralis muscle-stage ESPs identifies a novel upstream motif for in silico prediction of secreted products

    Get PDF
    The Trichinella genus contains parasitic nematodes capable of infecting a wide range of hosts including mammals, birds and reptiles. Like other helminths, T. spiralis secretes a complex mixture of bioactive molecules capable of modulating its immediate surroundings and creating a hospitable environment for growth, survival and ultimately transmission. The constitution of these excretory-secretory products (ESPs) changes depending on the tissue niche and the specific stage of parasite development. Unique to T. spiralis is a true intracellular stage wherein larvae develop inside striated myotubes. Remarkably, the parasite larvae do not destroy the host cell but rather reprogram it to support their presence and growth. This transformation is largely mediated through stage-specific secretions released into the host cell cytoplasm. In this study, we apply state of the art proteomics and computational approaches to elucidate the composition and functions of muscle-stage T. spiralis ESPs. Moreover, we define a recurring, upstream motif associated with the stichosome, the main secretory organ of this worm, and can be used to predict secreted proteins across experimentally less tractable T. spiralis life cycle stages

    Human Cytomegalovirus Infection Upregulates the Mitochondrial Transcription and Translation Machineries.

    Get PDF
    UNLABELLED: Infection with human cytomegalovirus (HCMV) profoundly affects cellular metabolism. Like in tumor cells, HCMV infection increases glycolysis, and glucose carbon is shifted from the mitochondrial tricarboxylic acid cycle to the biosynthesis of fatty acids. However, unlike in many tumor cells, where aerobic glycolysis is accompanied by suppression of mitochondrial oxidative phosphorylation, HCMV induces mitochondrial biogenesis and respiration. Here, we affinity purified mitochondria and used quantitative mass spectrometry to determine how the mitochondrial proteome changes upon HCMV infection. We found that the mitochondrial transcription and translation systems are induced early during the viral replication cycle. Specifically, proteins involved in biogenesis of the mitochondrial ribosome were highly upregulated by HCMV infection. Inhibition of mitochondrial translation with chloramphenicol or knockdown of HCMV-induced ribosome biogenesis factor MRM3 abolished the HCMV-mediated increase in mitochondrially encoded proteins and significantly impaired viral growth under bioenergetically restricting conditions. Our findings demonstrate how HCMV manipulates mitochondrial biogenesis to support its replication. IMPORTANCE: Human cytomegalovirus (HCMV), a betaherpesvirus, is a leading cause of morbidity and mortality during congenital infection and among immunosuppressed individuals. HCMV infection significantly changes cellular metabolism. Akin to tumor cells, in HCMV-infected cells, glycolysis is increased and glucose carbon is shifted from the tricarboxylic acid cycle to fatty acid biosynthesis. However, unlike in tumor cells, HCMV induces mitochondrial biogenesis even under aerobic glycolysis. Here, we have affinity purified mitochondria and used quantitative mass spectrometry to determine how the mitochondrial proteome changes upon HCMV infection. We find that the mitochondrial transcription and translation systems are induced early during the viral replication cycle. Specifically, proteins involved in biogenesis of the mitochondrial ribosome were highly upregulated by HCMV infection. Inhibition of mitochondrial translation with chloramphenicol or knockdown of HCMV-induced ribosome biogenesis factor MRM3 abolished the HCMV-mediated increase in mitochondrially encoded proteins and significantly impaired viral growth. Our findings demonstrate how HCMV manipulates mitochondrial biogenesis to support its replication.S.K. was supported by a European Molecular Biology Organization long-term fellowship (ALTF 887-2009). M.P.W is funded by a Wellcome Trust Senior Clinical Fellowship (108070/Z/15/Z). R.J.S. is supported by MRC grant (MR/L008734/1). P.J.L . is supported by a Wellcome Trust Principal Research Fellowship, grant (WT101835). J. S. is supported by MRC Programme grant (G0701279). J.R., L. V. and M.M. are supported by MRC as part of the core funding for the Mitochondrial Biology Unit (MC_U105697135). L.V. is also supported by EMBO (ALFT 701- 2013).This is the final version of the article. It first appeared from the American Society for Microbiology via http://dx.doi.org/10.1128/mBio.00029-1

    Inhibition of human cytomegalovirus replication by interferon alpha can involve multiple anti-viral factors

    Get PDF
    The shortcomings of current direct-acting anti-viral therapy against human cytomegalovirus (HCMV) has led to interest in host-directed therapy. Here we re-examine the use of interferon proteins to inhibit HCMV replication utilizing both high and low passage strains of HCMV. Pre-treatment of cells with interferon alpha (IFNα) was required for robust and prolonged inhibition of both low and high passage HCMV strains, with no obvious toxicity, and was associated with an increased anti-viral state in HCMV-infected cells. Pre-treatment of cells with IFNα led to poor expression of HCMV immediate-early proteins from both high and low passage strains, which was associated with the presence of the anti-viral factor SUMO-PML. Inhibition of HCMV replication in the presence of IFNα involving ZAP proteins was HCMV strain-dependent, wherein a high passage HCMV strain was obviously restricted by ZAP and a low passage strain was not. This suggested that strain-specific combinations of anti-viral factors were involved in inhibition of HCMV replication in the presence of IFNα. Overall, this work further supports the development of strategies involving IFNα that may be useful to inhibit HCMV replication and highlights the complexity of the anti-viral response to HCMV in the presence of IFNα

    A Mass Spectrometry-Based Approach for Mapping Protein Subcellular Localization Reveals the Spatial Proteome of Mouse Primary Neurons

    Get PDF
    We previously developed a mass spectrometry-based method, Dynamic Organellar Maps, for the determination of protein subcellular localisation, and the identification of translocation events in comparative experiments. The use of metabolic labelling for quantification (SILAC) renders the method best suited to cells grown in culture. Here we have adapted the workflow to both label-free quantification (LFQ) and chemical labelling/multiplexing strategies (Tandem Mass Tagging, TMT). Both new methods are highly effective for generation of organellar maps and capture of protein translocations. Furthermore, application of label-free organellar mapping to acutely isolated mouse primary neurons provided subcellular localisation and copy number information for over 8,000 proteins, allowing a detailed analysis of organellar organisation. Our study extends the scope of Dynamic Organellar Maps to any cell type or tissue, and also to high throughput screening.This work was funded by the German Research Foundation (DFG/Gottfried Wilhelm Leibniz Prize MA 1764/2-1), the Louis-Jeantet Foundation, the Max Planck Society for the Advancement of Science, a Wellcome Trust Senior Clinical Research Fellowship 108070/Z/15/Z (to M.P.W.), and a strategic award to Cambridge Institute for Medical Research from the Wellcome Trust (100140)

    Erythrocytes lacking the Langereis blood group protein ABCB6 are resistant to the malaria parasite Plasmodium falciparum.

    Get PDF
    The ATP-binding cassette transporter ABCB6 was recently discovered to encode the Langereis (Lan) blood group antigen. Lan null individuals are asymptomatic, and the function of ABCB6 in mature erythrocytes is not understood. Here, we assessed ABCB6 as a host factor for Plasmodium falciparum malaria parasites during erythrocyte invasion. We show that Lan null erythrocytes are highly resistant to invasion by P. falciparum, in a strain-transcendent manner. Although both Lan null and Jr(a-) erythrocytes harbor excess porphyrin, only Lan null erythrocytes exhibit a P. falciparum invasion defect. Further, the zoonotic parasite P. knowlesi invades Lan null and control cells with similar efficiency, suggesting that ABCB6 may mediate P. falciparum invasion through species-specific molecular interactions. Using tandem mass tag-based proteomics, we find that the only consistent difference in membrane proteins between Lan null and control cells is absence of ABCB6. Our results demonstrate that a newly identified naturally occurring blood group variant is associated with resistance to Plasmodium falciparum

    The association of health literacy with adherence in older 2 adults, and its role in interventions: a systematic meta-review

    Get PDF
    Background: Low health literacy is a common problem among older adults. It is often suggested to be associated with poor adherence. This suggested association implies a need for effective adherence interventions in low health literate people. However, previous reviews show mixed results on the association between low health literacy and poor adherence. A systematic meta-review of systematic reviews was conducted to study the association between health literacy and adherence in adults above the age of 50. Evidence for the effectiveness of adherence interventions among adults in this older age group with low health literacy was also explored. Methods: Eight electronic databases (MEDLINE, ERIC, EMBASE, PsycINFO, CINAHL, DARE, the Cochrane Library, and Web of Knowledge) were searched using a variety of keywords regarding health literacy and adherence. Additionally, references of identified articles were checked. Systematic reviews were included if they assessed the association between health literacy and adherence or evaluated the effectiveness of interventions to improve adherence in adults with low health literacy. The AMSTAR tool was used to assess the quality of the included reviews. The selection procedure, data-extraction, and quality assessment were performed by two independent reviewers. Seventeen reviews were selected for inclusion. Results: Reviews varied widely in quality. Both reviews of high and low quality found only weak or mixed associations between health literacy and adherence among older adults. Reviews report on seven studies that assess the effectiveness of adherence interventions among low health literate older adults. The results suggest that some adherence interventions are effective for this group. The interventions described in the reviews focused mainly on education and on lowering the health literacy demands of adherence instructions. No conclusions could be drawn about which type of intervention could be most beneficial for this population. Conclusions: Evidence on the association between health literacy and adherence in older adults is relatively weak. Adherence interventions are potentially effective for the vulnerable population of older adults with low levels of health literacy, but the evidence on this topic is limited. Further research is needed on the association between health literacy and general health behavior, and on the effectiveness of interventions

    Phenotypic and Functional Characterization of Human Memory T Cell Responses to Burkholderia pseudomallei

    Get PDF
    The Gram-negative bacterium, Burkholderia pseudomallei, is a public health problem in southeast Asia and northern Australia and a Centers for Disease Control and Prevention listed Category B potential bioterrorism agent. It is the causative agent of melioidosis, and clinical manifestations vary from acute sepsis to chronic localized and latent infection, which can reactivate decades later. B. pseudomallei is the major cause of community-acquired pneumonia and septicemia in northeast Thailand. In spite of the medical importance of B. pseudomallei, little is known about the mechanisms of pathogenicity and the immunological pathways of host defense. There is no available vaccine, and the mortality rate in acute cases can exceed 40% with 10–15% of survivors relapsing or being reinfected despite prolonged and complete treatments. In this article, we describe cell-mediated immune responses to B. pseudomallei in humans living in northeast Thailand and demonstrate clear evidence of T cell priming in healthy seropositive individuals and patients who recovered from melioidosis. This is the most detailed study yet performed on the cell types that produce interferon-gamma to B. pseudomallei in humans and the antigens that they recognize and the first to study large sample numbers in the primary endemic focus of melioidosis in the world
    corecore