1,123 research outputs found

    Abnormality Detection in Retinal Images

    Get PDF
    The implementation of data mining techniques in the medical area has generated great interest because of its potential for more efficient, economic and robust performance when compared to physicians. In this paper, we focus on the implementation of Multiple-Instance Learning (MIL) in the area of medical image mining, particularly to hard exudates detection in retinal images from diabetic patients. Our proposed approach deals with the highly noisy images that are common in the medical area, improving the detection specificity while keeping the sensitivity as high as possible. We have also investigated the effect of feature selection on system performance. We describe how we implement the idea of MIL on the problem of retinal image mining, discuss the issues that are characteristic of retinal images as well as issues common to other medical image mining problems, and report the results of initial experiments.Singapore-MIT Alliance (SMA

    Surface plasmon enhanced responsivity in a waveguided germanium metal-semiconductor-metal photodetector

    No full text
    The authors report on high transverse magnetic (TM)-mode responsivity in a waveguided germaniumSchottky-barriermetal-semiconductor-metalphotodetector on silicon-on-insulator substrate for operating wavelength at 1550 nm. The employed aluminum interdigitated electrodes act as a one-dimensional rectangular grating above the depletion layer. By means of properly designed finger dimensions, surface plasmon polariton resonances can be excited at the interface of metal and silicon interfacial layer due to grating coupling. The resulting strong field intensities reach into active region, enabling high absorption under TM injection. At a voltage of 1 V, the TM-mode photocurrent is measured over three times than that of transverse electric mode, in spite of the relatively larger TM insertion loss in the silicon waveguide.This work is supported by Agency for Science, Technology and Research A*STAR SERC Science and Engineering Research Council Grant Programme SERC Grant No. 092 154 0098, Singapore

    Recommendation for a contouring method and atlas of organs at risk in nasopharyngeal carcinoma patients receiving intensity-modulated radiotherapy

    Get PDF
    Background and purpose To recommend contouring methods and atlas of organs at risk (OARs) for nasopharyngeal carcinoma (NPC) patients receiving intensity-modulated radiotherapy, in order to help reach a consensus on interpretations of OARs delineation. Methods and materials Two to four contouring methods for the middle ear, inner ear, temporal lobe, parotid gland and spinal cord were identified via systematic literature review; their volumes and dosimetric parameters were compared in 41 patients. Areas under the receiver operating characteristic curves for temporal lobe contouring were compared in 21 patients with unilateral temporal lobe necrosis (TLN). Results Various contouring methods for the temporal lobe, middle ear, inner ear, parotid gland and spinal cord lead to different volumes and dosimetric parameters (P < 0.05). For TLN, D1 of PRV was the most relevant dosimetric parameter and 64 Gy was the critical point. We suggest contouring for the temporal lobe, middle ear, inner ear, parotid gland and spinal cord. A CT-MRI fusion atlas comprising 33 OARs was developed. Conclusions Different dosimetric parameters may hinder the dosimetric research. The present recommendation and atlas, may help reach a consensus on subjective interpretation of OARs delineation to reduce inter-institutional differences in NPC patients. © 2013 Elsevier Ireland Ltd. All rights reserved.published_or_final_versio

    Blowfly-derived mammal DNA as mammal diversity assessment tool: Determination of dispersal activity and flight range of tropical blowflies

    Get PDF
    Mammalian DNA extracted from the invertebrates, especially blowfly-derived DNA, has been suggested as a useful tool to complement traditional field methods for terrestrial mammal monitoring. However, the accuracy of the estimated location of the target mammal detected from blowfly-derived DNA is largely dependent on the knowledge of blowflies' dispersal range. Presently, published data on adult blowfly dispersal capabilities remain scarce and mostly limited to temperate and subtropical regions, with no published report on the adult blowfly dispersal range in the Tropics. We seek to determine the blowfly flight range and dispersal activity in a tropical plantation in Malaysia by mark-release-recapture of approximately 3000 wild blowflies by use of rotten fish-baited traps for nine consecutive days. Out of the 3000 marked Chrysomya spp., only 1.5% (43) were recaptured during the 9-day sampling period. The majority of the blowflies (79%) were recaptured 1 km from the release point, while 20.9% were caught about 2-3 km from the release point. One individual blowfly travelled as far as 3 km and before being recaptured, which was the maximum dispersal distance recorded in this study. This result suggests that the estimated locations of the mammals detected from blowfly-derived iDNA is likely to be within 1-2 km radius from the origin of the blowfly sampling location. However, a more accurate estimated distance between the target mammal and the blowfly sampling location requires further investigation due to various factors, such as blowfly species, wind speed and direction that may potentially affect the blowfly dispersal activities. This study contributes further understanding on the development of a blowfly-derived DNA method as a mammalian monitoring tool in the tropical forests

    PRL-3, a Metastasis Associated Tyrosine Phosphatase, Is Involved in FLT3-ITD Signaling and Implicated in Anti-AML Therapy

    Get PDF
    Combination with other small molecule drugs represents a promising strategy to improve therapeutic efficacy of FLT3 inhibitors in the clinic. We demonstrated that combining ABT-869, a FLT3 inhibitor, with SAHA, a HDAC inhibitor, led to synergistic killing of the AML cells with FLT3 mutations and suppression of colony formation. We identified a core gene signature that is uniquely induced by the combination treatment in 2 different leukemia cell lines. Among these, we showed that downregulation of PTP4A3 (PRL-3) played a role in this synergism. PRL-3 is downstream of FLT3 signaling and ectopic expression of PRL-3 conferred therapeutic resistance through upregulation of STAT (signal transducers and activators of transcription) pathway activity and anti-apoptotic Mcl-1 protein. PRL-3 interacts with HDAC4 and SAHA downregulates PRL-3 via a proteasome dependent pathway. In addition, PRL-3 protein was identified in 47% of AML cases, but was absent in myeloid cells in normal bone marrows. Our results suggest such combination therapies may significantly improve the therapeutic efficacy of FLT3 inhibitors. PRL-3 plays a potential pathological role in AML and it might be a useful therapeutic target in AML, and warrant clinical investigation

    Processing of thermally stable 3D hierarchical ZIF-8@ZnO structures and their CO2 adsorption studies

    Get PDF
    Core-shell hybrid structures of ZnO-Zeolitic Imidazolate Framework-8 (ZIF@ZnO) were obtained by the solvothermal treatment of ZnO hierarchical structures having an average cluster size of ~3 µm and surface area of ~19 m2/g. The surface area and pore volume of these supported structures could be tailored as a function of reaction time and temperature. Solvothermal treatment of ZnO structures in the presence of imidazole at 95 °C for 24 h induced extremely large surface area of 733 m2/g for the ZIF@ZnO samples. Samples thus obtained demonstrated a CO2 adsorption capacity of 0.34 mmol/g at 25 °C compared to the value of 0.052 mmol/g measured for the ZnO structures. More significantly, the ZnO core helped the ZIF-8 surface fractal assemblies to significantly improve the thermal stability and retain their near spherical shapes allowing better handling in any practical adsorption application. The results validate that surface conversion of ZnO microstructures to ZIF-8 could be an efficient pathway towards the development of ZIF based supported adsorbents for CO2 separation. © 2016 Elsevier Ltd. All rights reserved

    Investigation on the competing effects of clay dispersion and matrix plasticisation for polypropylene/clay nanocomposites. Part I: morphology and mechanical properties

    Get PDF
    The key compatibiliser role of maleated polypropylene (MAPP) to improve the clay dispersability has been explicitly addressed in the fabrication process and material characterisation of polypropylene (PP)/clay nanocomposites. However, its matrix plasticiser role, which has been rarely mentioned, could adversely influence the excellent mechanical properties of such nanocomposites, resulting from the homogeneous clay dispersion. PP/clay nanocomposites in the presence of MAPP were prepared by twin screw extrusion and subsequently injection moulded with three typical material formulations in fixed parametric settings: (1) weight ratio (WR) of clay and MAPP, WR = 1:2; (2) MAPP content of 6 wt% and (3) clay content of 5 wt%. The morphological structures and mechanical properties of PP/clay nanocomposites were examined by using X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and universal mechanical testing. The further improvement of mechanical properties was evidently hindered with very inconsiderable alteration of morphological structures in terms of the clay dispersion level. This observation could be ascribed to the change of MAPP role from a compatibiliser to a plasticiser because of its excessive amount used above a certain saturation level, which was found in the range of 3–6 wt% in MAPP contents for the enhancements of tensile and flexural properties of PP/clay nanocomposites
    corecore