748 research outputs found

    Assessment and preliminary model development of shape memory polymers mechanical counter pressure space suits

    Get PDF
    Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 39-41).This thesis seeks to assess the viability of a space qualified shape memory polymer (SMP) mechanical counter pressure (MCP) suit. A key development objective identified by the International Space Exploration Coordination Group, the development of a superior space suit with greater mobility and environmental robustness is necessary to support long-range human space exploration, specifically a mission to Mars. Conceptualized in 1971, a spacesuit utilizing MCP would fulfill these goals but its development was halted due to inadequate mechanical analysis and material limitations at the time. Since then, new active materials have been assessed to potentially further the development of a space qualified MCP space suit, which include quantitative thresholds for minimum pressure production, durability, pressure distribution, mobility range, and ease of garment donning and doffing. Guided by these criteria, a SMP biaxial tubular braid applying MCP through active compression was designed and the prototype manufacturing processes were outlined. To predict the pressure production of this garment, the thermo-mechanics of a SMP was combined with the textile mechanics of a biaxial tubular braid and simulated within design parameter ranges consistent with the design criteria and practical considerations. The pressure production was controllable with the design parameters SMP elastic modulus, garment radial deformation, textile fiber spacing, and operational temperature. Assuming reasonable model accuracy, a SMP garment could achieve the necessary pressure production for a space qualified MCP suit, however, the durability of such a garment would be questionable considering the creep sustained from consecutive spacewalks of four to eight hours. Recommendations are made for methods to increase model accuracy, suggested SMP actuation mechanisms, and alternative textile architectures.by Brian Wee.S.B

    Cyclic AMP signalling in pancreatic islets

    Get PDF
    Cyclic 3'5'AMP (cAMP) is an important physiological amplifier of glucose-induced insulin secretion by the pancreatic islet β-cell, where it is formed by the activity of adenylyl cyclases, which are stimulated by glucose, through elevation in intracellular calcium concentrations, and by the incretin hormones (GLP-1 and GIP). cAMP is rapidly degraded in the pancreatic islet β-cell by various cyclic nucleotide phosphodiesterase (PDE) enzymes. Many steps involved in glucose-induced insulin secretion are modulated by cAMP, which is also important in regulating pancreatic islet β-cell differentiation, growth and survival. This chapter discusses the formation, destruction and actions of cAMP in the islets with particular emphasis on the β-cell

    Service Oriented Architecture (SOA): Implications for Australian University Information Systems Curriculum

    Get PDF
    Service Oriented Architecture (SOA) is emerging as a popular approach and paradigm for organizations to gain competitive advantage via managing their software applications and IT infrastructure as a set of interacting services. As the SOA market value is posed to increase to 10.3USD billion (WinterGreen-Research, 2009) by 2015, it is crucial that IS schools in Australia are providing the relevant industries with competent IS professionals that possess the necessary skills and are capable of understanding the impacts/implications of SOA deployments in order for them to design and create services of value. This paper examines the organizational and technological impacts/implications on organizations and discusses the skills and knowledge required by SOA-IS professionals and compares these with the requirements with the Australian Computer Society’s (ACS) common body of knowledge created for accreditation of Australia university curricula

    Changes in skeletal integrity and marrow adiposity during high-fat diet and after weight loss

    Get PDF
    The prevalence of obesity has continued to rise over the past three decades leading to significant increases in obesity-related medical care costs from metabolic and non-metabolic sequelae. It is now clear that expansion of body fat leads to an increase in inflammation with systemic effects on metabolism. In mouse models of diet-induced obesity there is also an expansion of bone marrow adipocytes. However, the persistence of these changes after weight-loss has not been well described. The objective of this study was to investigate the impact of high-fat diet (HFD) and subsequent weight-loss on skeletal parameters in C57Bl6/J mice. Male mice were given a normal chow diet (ND) or 60% HFD at 6-weeks of age for 12-, 16-, or 20-weeks. A third group of mice was put on HFD for 12-weeks and then on ND for 8-weeks to mimic weight-loss. After these dietary challenges the tibia and femur were removed and analyzed by microCT for bone morphology. Decalcification followed by osmium staining was used to assess bone marrow adiposity and mechanical testing was performed to assess bone strength. After 12-, 16-, or 20-weeks of HFD, mice had significant weight gain relative to controls. Body mass returned to normal after weight-loss. Marrow adipose tissue (MAT) volume in the tibia increased after 16-weeks of HFD and persisted in the 20-week HFD group. Weight loss prevented HFD-induced MAT expansion. Trabecular bone volume fraction, mineral content, and number were decreased after 12-, 16-, or 20-weeks of HFD, relative to ND controls, with only partial recovery after weight-loss. Mechanical testing demonstrated decreased fracture resistance after 20-weeks of HFD. Loss of mechanical integrity did not recover after weight-loss. Our study demonstrates that HFD causes long-term, persistent changes in bone quality, despite prevention of marrow adipose tissue accumulation, as demonstrated through changes in bone morphology and mechanical strength in a mouse model of diet-induced obesity and weight-loss

    Monoallelic variants resulting in substitutions of MAB21L1 Arg51 Cause Aniridia and microphthalmia

    Get PDF
    Classical aniridia is a congenital and progressive panocular disorder almost exclusively caused by heterozygous loss-of-function variants at the PAX6 locus. We report nine individuals from five families with severe aniridia and/or microphthalmia (with no detectable PAX6 mutation) with ultrarare monoallelic missense variants altering the Arg51 codon of MAB21L1. These mutations occurred de novo in 3/5 families, with the remaining families being compatible with autosomal dominant inheritance. Mice engineered to carry the p.Arg51Leu change showed a highly-penetrant optic disc anomaly in heterozygous animals with severe microphthalmia in homozygotes. Substitutions of the same codon (Arg51) in MAB21L2, a close homolog of MAB21L1, cause severe ocular and skeletal malformations in humans and mice. The predicted nucleotidyltransferase function of MAB21L1 could not be demonstrated using purified protein with a variety of nucleotide substrates and oligonucleotide activators. Induced expression of GFP-tagged wildtype and mutant MAB21L1 in human cells caused only modest transcriptional changes. Mass spectrometry of immunoprecipitated protein revealed that both mutant and wildtype MAB21L1 associate with transcription factors that are known regulators of PAX6 (MEIS1, MEIS2 and PBX1) and with poly(A) RNA binding proteins. Arg51 substitutions reduce the association of wild-type MAB21L1 with TBL1XR1, a component of the NCoR complex. We found limited evidence for mutation-specific interactions with MSI2/Musashi-2, an RNA-binding proteins with effects on many different developmental pathways. Given that biallelic loss-of-function variants in MAB21L1 result in a milder eye phenotype we suggest that Arg51-altering monoallelic variants most plausibly perturb eye development via a gain-of-function mechanism

    AO Spine Upper Cervical Injury Classification System: A Description and Reliability Study.

    Get PDF
    BACKGROUND CONTEXT Prior upper cervical spine injury classification systems have focused on injuries to the craniocervical junction (CCJ), atlas, and dens independently. However, no previous system has classified upper cervical spine injuries using a comprehensive system incorporating all injuries from the occiput to the C2-3 joint. PURPOSE To (1) determine the accuracy of experts at correctly classifying upper cervical spine injuries based on the recently proposed AO Spine Upper Cervical Injury Classification System (2) to determine their interobserver reliability and (3) identify the intraobserver reproducibility of the experts. STUDY DESIGN/SETTING International Multi-Center Survey PATIENT SAMPLE: A survey of international spine surgeons on 29 unique upper cervical spine injuries OUTCOME MEASURES: Classification accuracy, interobserver reliability, intraobserver reproducibility METHODS: Thirteen international AO Spine Knowledge Forum Trauma members participated in two live webinar-based classifications of 29 upper cervical spine injuries presented in random order, four weeks apart. Percent agreement with the gold-standard and kappa coefficients (ƙ) were calculated to determine the interobserver reliability and intraobserver reproducibility. RESULTS Raters demonstrated 80.8% and 82.7% accuracy with identification of the injury classification (combined location and type) on the first and second assessment, respectively. Injury classification intraobserver reproducibility was excellent (mean, [range] ƙ = 0.82 [0.58-1.00]). Excellent interobserver reliability was found for injury location (ƙ = 0.922 and ƙ= 0.912) on both assessments, while injury type was substantial (ƙ=0.689 and 0.699) on both assessments. This correlated to a substantial overall interobserver reliability (ƙ = 0.729 and 0.732). CONCLUSION Early phase validation demonstrated classification of upper cervical spine injuries using the AO Spine Upper Cervical Injury Classification System to be accurate, reliable, and reproducible. Greater than 80% accuracy was detected for injury classification. The intraobserver reproducibility was excellent, while the interobserver reliability was substantial

    Delineation of the primary tumour Clinical Target Volumes (CTV-P) in laryngeal, hypopharyngeal, oropharyngeal and oral cavity squamous cell carcinoma : AIRO, CACA, DAHANCA, EORTC, GEORCC, GORTEC, HKNPCSG, HNCIG, IAG-KHT, LPRHHT, NCIC CTG, NCRI, NRG Oncology, PHNS, SBRT, SOMERA, SRO, SSHNO, TROG consensus guidelines

    Get PDF
    Purpose: Few studies have reported large inter-observer variations in target volume selection and delineation in patients treated with radiotherapy for head and neck squamous cell carcinoma. Consensus guidelines have been published for the neck nodes (see Gregoire et al., 2003, 2014), but such recommendations are lacking for primary tumour delineation. For the latter, two main schools of thoughts are prevailing, one based on geometric expansion of the Gross Tumour Volume (GTV) as promoted by DAHANCA, and the other one based on anatomical expansion of the GTV using compartmentalization of head and neck anatomy. Method: For each anatomic location within the larynx, hypopharynx, oropharynx and oral cavity, and for each T-stage, the DAHANCA proposal has been comprehensively reviewed and edited to include anatomic knowledge into the geometric Clinical Target Volume (CTV) delineation concept. A first proposal was put forward by the leading authors of this publication (VG and CG) and discussed with opinion leaders in head and neck radiation oncology from Europe, Asia, Australia/New Zealand, North America and South America to reach a worldwide consensus. Results: This consensus proposes two CTVs for the primary tumour, the so called CTV-P1 and CVT-P2, corresponding to a high and lower tumour burden, and which should be associated with a high and a lower dose prescription, respectively. Conclusion: Implementation of these guidelines in the daily practice of radiation oncology should contribute to reduce treatment variations from clinicians to clinicians, facilitate the conduct of multi institutional clinical trials, and contribute to improved care of patients with head and neck carcinoma. (C) 2017 Elsevier B.V. All rights reserved.Peer reviewe

    International Guideline on Dose Prioritization and Acceptance Criteria in Radiation Therapy Planning for Nasopharyngeal Carcinoma

    Get PDF
    Purpose: The treatment of nasopharyngeal carcinoma requires high radiation doses. The balance of the risks of local recurrence owing to inadequate tumor coverage versus the potential damage to the adjacent organs at risk (OARs) is of critical importance. With advancements in technology, high target conformality is possible. Nonetheless, to achieve the best possible dose distribution, optimal setting of dose targets and dose prioritization for tumor volumes and various OARs is fundamental. Radiation doses should always be guided by the As Low As Reasonably Practicable principle. There are marked variations in practice. This study aimed to develop a guideline to serve as a global practical reference. Methods and Materials: A literature search on dose tolerances and normal-tissue complications after treatment for nasopharyngeal carcinoma was conducted. In addition, published guidelines and protocols on dose prioritization and constraints were reviewed. A text document and preliminary set of variants was circulated to a panel of international experts with publications or extensive experience in the field. An anonymized voting process was conducted to rank the proposed variants. A summary of the initial voting and different opinions expressed by members were then recirculated to the whole panel for review and reconsideration. Based on the comments of the panel, a refined second proposal was recirculated to the same panel. The current guideline was based on majority voting after repeated iteration for final agreement. Results: Variation in opinion among international experts was repeatedly iterated to develop a guideline describing appropriate dose prioritization and constraints. The percentage of final agreement on the recommended parameters and alternative views is shown. The rationale for the recommendations and the limitations of current evidence are discussed. Conclusions: Through this comprehensive review of available evidence and interactive exchange of vast experience by international experts, a guideline was developed to provide a practical reference for setting dose prioritization and acceptance criteria for tumor volumes and OARs. The final decision on the treatment prescription should be based on the individual clinical situation and the patient's acceptance of optimal balance of risk. (C) 2019 Elsevier Inc. All rights reserved
    corecore