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Summary 

This guideline is the result of an international consensus to provide a practical reference for 

setting dose prioritization and acceptance criteria for tumor volumes and organs at risk for 

nasopharyngeal carcinoma.  
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Abstract 

Purpose 

The treatment of nasopharyngeal carcinoma (NPC) requires high radiation doses. The balance 

of the risks of local recurrence due to inadequate tumor coverage versus the potential damage 

to the adjacent organs at risk (OARs) is of critical importance. With advancements in 

technology, high target conformality is possible. Nonetheless, to achieve the best possible 

dose distribution, optimal setting of dose targets and dose prioritization for tumor volumes 

and various OARs is fundamental. Radiation doses should always be guided by the ALARP 

(As Low As Reasonably Practicable) principle. There are marked variations in practice. This 

study aimed to develop a guideline to serve as a global practical reference. 

Methods 

A literature search on dose tolerances and normal tissue complications following treatment 

for NPC was conducted. In addition, published guidelines and protocols on dose prioritization 

and constraints were reviewed.  A text document and preliminary set of variants was 

circulated to a panel of international experts with publications and/or extensive experience in 

the field. An anonymized voting process was conducted to rank the proposed variants. A 

summary of the initial voting and different opinions expressed by members were then re-

circulated to the whole panel for review and re-consideration. Based on the comments of the 

panel, a refined second proposal was re-circulated to the same panel. The current guideline 

was based on majority voting following repeated iteration for final agreement.  

 

Results 

Variation in opinion among international experts was repeatedly iterated to develop a 

guideline describing appropriate dose prioritization and constraints. The percentage of final 

agreement on the recommended parameters and alternative views is shown. The rationale for 

the recommendations and the limitations of current evidence are discussed. 

 

Conclusions 
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Through this comprehensive review of available evidence and interactive exchange of vast 

experience by international experts, a guideline was developed to provide a practical 

reference for setting dose prioritization and acceptance criteria for tumor volumes and OARs. 

The final decision on the treatment prescription should be based on the individual clinical 

situation and patient’s acceptance of optimal balance of risk.  
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Introduction 

 

Radiation therapy (RT) for nasopharyngeal carcinoma (NPC) presents a unique challenge due 

to the anatomical proximity of target volumes to critical organs at risk (OARs). Although 

NPC, especially the classical non-keratinizing type, is relatively radiosensitive, high doses are 

generally needed for eradication of gross tumor and the therapeutic margin for optimal tumor 

control is notoriously narrow. Even in the contemporary era of intensity-modulated 

radiotherapy (IMRT) with extensive use of concurrent chemotherapy, dosimetric inadequacy 

enforced by dose constraints on OARs remains one of the most important independent factors 

affecting treatment outcome. It is often difficult to achieve the optimal balance and trade-off 

between risks of local recurrence due to inadequate tumor coverage versus potential serious 

late complications; this results from the inevitably high doses to OARs in the case of 

advanced tumors with extensive locoregional infiltration [1]. Decisions on prioritization vary 

substantially depending on different philosophies. 

 

The advent of newer planning and treatment delivery technologies has led to an evolving 

capability to maximize dose conformity. Although there is little doubt that IMRT is superior 

in improving tumour control and reducing toxicities when compared with 2DRT, there is 

marked variation in the toxicities reported. In the trial by Peng et al. [2], the incidence of 

temporal lobe necrosis was still as high as 13.1% and optic nerve/chiasm injury was 1.6% in 

the IMRT arm; in contrast, other studies have shown that it is possible to achieve similar local 

control with substantially lower rates of neurological toxicity, such as a temporal lobe 

necrosis rate of 0.2% [3].   

 

Standardizing the appropriate delineation of tumour targets for different dose levels, dose 

prioritization for tumour targets and the various OARs, and acceptance criteria for each 

parameter is fundamental for future study and progress. Unfortunately, accurate data on the 

tolerance doses of critical OARs remain scanty. There is also marked variation in the 

philosophy and practice amongst different institutions and clinicians with regards to the order 

of prioritisation and the exact maximum acceptable doses for the different OARs.  

 

Through a process of iterative development amongst international experts, we aimed to 

provide clinicians with a reference tool for treatment planning for NPC. Twenty-six 
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contributors from major centres in Asia, Australia, North America, Middle East and Europe 

previously provided input into the publication of “xxxx” [4]. To address issues that could not 

be covered in the previous guideline, our goal for this document was to provide a practical 

reference to assist clinicians in deciding on the optimal RT planning process for NPC and the 

best possible compromise for difficult cases.  

 

 

Methodology 

 

The following processes were used for evidence searching and development of the guideline: 

 

Firstly, an initial literature search on NPC-specific late complications was performed on 

December 2017 in PubMed using the following search terms: 

("intensity-modulated radiation therapy" OR "intensity-modulated radiotherapy" OR IMRT) 

nasopharyngeal ("late toxicity" OR "temporal lobe" OR brainstem OR visual OR optic OR 

eye OR hearing OR ear) 

Published treatment guidelines and dose constraints by various centers were also reviewed. 

This formed the initial set of planning dose prioritization and acceptance criteria for voting 

based on a modified Delphi process [5-18]. A preliminary set of proposed variants for 

planning dose prioritization and acceptance criteria was then drafted. In order to provide a 

pragmatic reference, both a “goal” OAR constraint and a variation acceptable for treatment in 

challenging situations (i.e. maximum acceptance criteria (MAC)) were listed.  

 

Secondly, a panel of international experts was convened to develop the guideline. To ensure 

appropriate recommendations with international representation, criteria were set to include 

only members with publications on treatment outcome (tumour control and toxicity), and/or 

extensive experience specific to NPC in major academic centres from different parts of the 

world (including Asia, Middle East/Mediterranean Region, Oceania, Europe and North 

America). 

 

We used a modified Delphi process for developing the final guideline: the preliminary 

proposal, together with previously published guidelines and protocols (Table 1), was 

circulated among international experts for initial voting and comments. The initial percentage 

of agreement on the proposed criteria and the alternative views are shown in the Appendix 
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(Supplementary Table 1). The exact votes submitted were anonymized, while summary of 

this initial voting and different opinions and proposed variants expressed by members were 

circulated to the whole panel for review and re-consideration. Based on the exchanged 

comments and supporting data, a refined second proposal was drafted after repeated iteration 

among the panel members, and circulated for another round of voting. The current, finalized 

guideline summarized in Table 2 was based on majority views.  

 

In order to identify additional evidence published since the initial manuscript was finalized, a 

new literature search using the same search terms was conducted in May 2019 to ensure 

comprehensiveness of this review including the latest published evidence. 256 articles were 

identified; using the PRISMA checklist approach, 211 were excluded after initial screening of 

the abstracts. Of the 35 potentially relevant articles reviewed, 11 were excluded as they were 

found to be irrelevant to the subject of this study. Among the 24 relevant articles, 18 were 

cited in this manuscript as they provided specific recommendations on OAR dose constraints 

based on the latest updated data from the institute.  

 

A figure illustrating the literature search summary is added in Supplementary Appendix I.  

 

No major inconsistencies or discrepancies with our recommendations were found except for 

one very recent article on the dose constraint for the brainstem [19]. This information was 

circulated to the panel and a brief description of the findings was added to the guideline text, 

but the unanimous feedback from panel members was that this could not be recommended as 

practice-changing without further validation. 

 

The strength of the recommendations was rated according to the Grading of 

Recommendations Assessment, Development and Evaluation (GRADE) system 

(Supplementary Table 2) [20]. The GRADE level of evidence assigned for each OAR was 

initially discussed and drafted by the three senior authors; and circulated to all the authors as 

part of the manuscript review. There were no objections or changes to suggested GRADE 

assignments. The evidence on dose constraints was largely derived from retrospective 

studies. The percentages of agreement among the panel members in the final vote (together 

with the exact number of votes) were listed in the manuscript and Table 2. The alternative 

constraints suggested by dissenting experts were also shown to illustrate existing variations 

and the potential range for future consideration.   
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Results and Discussion on the Recommendations 

 

Before proceeding to setting dose prioritization and constraints, appropriate contouring of 

various structures is the first fundamental requirement. An international guideline on 

contouring of clinical tumour target volumes has been published previously [4]. Many 

authors in this current guideline also participated in the development of guidelines on 

contouring of organs at risk specifically for NPC [21] and head and neck cancers [22] which 

serve as useful references. We recommend that a planning risk volume (PRV) be delineated 

around critical organs to account for set-up variability. While this set-up variability varies 

among different institutions, a margin of not less than 2mm was generally recommended 

based on the study by Van Herk [23]. 

 

Prioritisation of dose constraints  

A study by Yao et al [24] in a cohort of NPC patients with gross tumour volume exceeding 60 

cm3, showed that the prescribed mean doses to brainstem PRV and optic chiasm PRV were 

68.13 Gy (± 4.74 Gy) and 66.54 Gy (± 8.62 Gy), respectively, which were far higher than the 

usual recommended dose constraints for these OARs. With IMRT treatment planning, setting 

the appropriate prioritization levels for different structures is fundamental for achieving the 

desired optimization of dose distribution. The general principle is to achieve full tumoricidal 

doses to the whole tumour target within the maximum tolerance dose of critical OARs. 

However, in the frequent situations in which a trade-off must be made, more than 90% of the 

expert panel agreed that the priority should be given to the critical OAR(s) to avoid 

potentially lethal or highly morbid sequelae.  

 

When the treatment plan is unable to give adequate tumor target coverage and meet the dose 

constraints for priority 1 OARs, we suggest either adaptive re-planning or consideration of 

induction chemotherapy. A recent randomized study by Yang et al suggests that the strategy 

of restricting full therapeutic dose to the MRI-defined volume that remains after induction 

chemotherapy, while ensuring that the pre-induction chemotherapy volume receives at least 

an intermediate dose (64 Gy) appears not to compromise 3-year local, regional and distant 

control or overall survival but served to reduce late toxicities and overall health status in a 
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cohort of 212 NPC patients [25]. Whether these results will continue to hold should an even 

lower dose be used (to meet critical OAR constraints) remains to be seen. 

 

There was unanimous agreement that Priority 1 should include the brainstem, spinal cord and 

optic chiasm, as damage to these serially arranged structures can result in catastrophic 

morbidity, and even mortality. Bilateral blindness due to damage to optic chiasm and/or both 

optic nerves is such a debilitating complication that there is universal agreement that at least 

the optic nerve on the less involved side should be included as Priority 1 for dose constraint. 

However, we would consider exceeding the commonly recommended MAC for the ipsilateral 

optic nerve (lowering to Priority 3) if this is unavoidable to achieve adequate doses to cover 

the tumour target, provided the patient consents to an increased risk of unilateral partial or 

complete loss of sight. The latter entails a careful explanation of the relative importance of 

the different components and trade-offs during the decision process. 

 

There was also unanimous agreement that Priority 2 should include tumour Planning Target 

Volume (PTV). There was, however, variation as to whether the priority for Gross Tumour 

Volume (GTV) should be raised to Priority 1 because, although it may still not be feasible to 

achieve minimum D98% of the prescribed dose to 100% of the GTV, there would at least be 

greater attempts to achieve the highest feasible dose. Under such circumstances, the options 

for the most suitable compromise should be discussed with the patient. 

 

We recommend that the temporal lobes be included under Priority 2 as temporal lobe necrosis 

(TLN) can lead to serious disability and mortality. The study by Lam et al. [26] showed that 

54% of patients progressed to grade 4 severity at 5 years after the diagnosis of TLN 

(asymptomatic and symptomatic) and 5-year overall survival was only 35%. However, there 

was variation in the level of priority accorded for this structure. 

 

There was also complete agreement that normal tissues in the oral cavity, post-cricoid 

pharynx, esophagus and glottic larynx should be assigned to Priority 4. There were variations 

as to whether the other structures should be set at Priority 3 or Priority 4. We recommend that 

the brachial plexus, pituitary gland, eyeball and lens be included as Priority 3; while cochlea, 

mandible and temporo-mandibular joints, thyroid, parotid and submandibular glands should 

be included under Priority 4.  
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Readers may wish to familiarize themselves with the DAHANCA Radiotherapy Guidelines 

2013 [14]. DAHANCA has a long history of producing RT guidelines, with dose-volume 

constraints and rules for prioritization. Instead of using two terms for constraints, “Desirable” 

and “Acceptable”, they distinguish between OAR dose and PRV dose. There are also some 

differences in the priority listing. In general, DAHANCA ranks PTV coverage lower than 

critical serial OARs, to allow compromises where the margins are tight. 

 

The desired dose and acceptance criteria for different structures  

Brainstem 

The QUANTEC review [27] recommended that a small volume of brainstem (1-10 mL) may 

be irradiated to a maximum dose of 59 Gy using dose fractionation ≤2 Gy and a Dmax <64 Gy 

with a point dose <1 cc. Two studies have been reported from Sun Yat-Sen Cancer Center to 

assess brainstem injury incurred by doses higher than that recommended by QUANTEC. The 

study (n=1544) by Li et al. [28] showed 59% of patients received a Dmax ≥54 Gy, and 25% 

received ≥64 Gy, of whom two developed brainstem necrosis; both had received a Dmax dose 

≥76.4 Gy and a V55 ≥3.8 cc. Their most recent analysis by Huang et al. [19] on 6264 NPC 

patients showed that patients with Dmax ≥67.4 Gy (equivalent dose in 2-Gy fractions 

{EQD2}) had significantly higher incidence of brainstem injury (odds ratio = 25.29, 95% CI: 

8.63–74.14; P < 0.001) than those with lower dose. Dmax of 67.4 Gy (EQD2) was 

recommended as the dose constraint for brainstem, but the authors also concluded that further 

studies are needed to validate their findings. On the other hand, Yao et al. [29] reported an 

alarming incidence rate of 2.8% at 5 years in a cohort of 327 NPC patients. Among the 8 

patients with brainstem injury, seven (one fatal and one hemiplegic) had Dmax and D0.1cc ≥ 

63.38 Gy and 60.89 Gy, respectively. 

 

Other studies showed that the volume of brainstem with high dose is also important: Uy et al. 

[30] reported a case of brainstem necrosis with a V54 of 4.7 cc.; Debus et al. [31] showed that 

a V50 >5.9 cc, V55 >2.7 cc, and V60 >0.9 cc were associated with brainstem toxicity. 

Schoenfeld et al. [32] further recommended to restrict the V55 to <0.1 cc.  

 

In view of the potential devastating consequence and risk of serious medico-legal 

implications by brainstem injury, while a higher dose (Dmax of 67.4 Gy) may be discussed as 

an option for patients with tumors encroaching the brainstem, a more conservative dose 

acceptance criterion was preferred among our panel for this general guideline (26/26 who 
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responded to this special vote) till more robust validation become available. 

 

Our final recommendation was to aim for a D0.03 cc PRV dose ≤54 Gy and MAC of 60 Gy. 

 

Level of agreement: 90% (18 of 20 voters) agreed on desirable dose (alternative suggestions 

ranged from 50-58 Gy); 90% (19 of 21 voters) agreed on MAC (alternative variants proposed 

ranged from 54-64 Gy). 

GRADE of recommendation: High/Moderate 

 

 

Spinal cord 

The QUANTEC review [33] suggests that at 2 Gy per fraction, the probability of myelopathy 

is 0.03% at 45 Gy and 0.2% at 50 Gy. 

Our final recommendation was to aim at a D0.03 cc PRV dose ≤45 Gy and MAC ≤50 Gy. 

 

Level of agreement: 100% (20 of 20 voters) agreed on desirable dose, 95% (20 of 21 voters) 

agreed on MAC (alternative variants proposed were up to 55 Gy).  

GRADE of recommendation: High 

 

 

Optic chiasm and optic nerve 

The QUANTEC review [34] suggested that the incidence of radiation-induced optic 

neuropathy (RION) was unusual for a Dmax <55 Gy, particularly for fraction sizes <2 Gy. The 

risk increases (3–7%) in the region of 55–60 Gy and becomes more substantial (>7–20%) for 

doses >60 Gy when fractionation schedules of 1.8–2.0 Gy are used. Similarly, in the study 

reported by Akagunduz et al. [35], a series of comprehensive visual tests showed that visual 

field and contrast sensitivity were affected significantly with V55 ≥ 50% and Dmean ≥ 50 Gy 

and visual evoked potential latency was affected significantly with Dmean ≥ 50 Gy, D5 ≥ 55 

Gy, and Dmax ≥ 60 Gy. For the chiasm, a significant detrimental effect of all parameters was 

observed on visual acuity as well.  

 

We set the same dose criteria for both structures as there were no data to suggest that their 

radiosensitivities were different. However, we suggest separate considerations for according 

priority levels as discussed above.  Our final recommendation was to aim at a D0.03 cc PRV 
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dose ≤54 Gy and MAC of ≤60 Gy, for both structures.  

 

Level of agreement: 93% (14 of 15 voters) agreed on desirable dose for the optic chiasm and 

optic nerve, respectively (alternative variants proposed was 50 Gy). For the recommended 

MAC, the agreement level among the panel was 82% (14 of 17 voters) and 95% for optic 

chiasm (alternative variants proposed ranged from 54-56 Gy) and optic nerve (alternative 

variants proposed were up to 62 Gy), respectively. 

GRADE of recommendation: High / Moderate  

 

 

Tumour 

Gross tumour volume (GTV):  

The study by Ng et al. [1], showed that those who received at least 66.5 Gy to primary GTV 

were less likely to have local failure (odds ratio, 0.289; p = 0.020).  

 

Our final recommendation was to aim for a minimum dose of ≥68.6 Gy (98% dose) and to set 

a minimum acceptable criterion at 66.5 Gy (95% dose).  

 

Level of agreement: 78% (14 of 18 voters) agreed on desirable dose (alternative variants 

proposed ranged from 66-70 Gy); 80% (16 of 20 voters) agreed on acceptable dose. 

GRADE of recommendation: Moderate  

 

 

Planning target volume (PTV): 

Dose prescription at 3-4 levels at conventional fractionation was agreed upon by 73%, while 

18% would prescribe using 2 dose levels only. As discussed in the previous guideline on the 

contouring of CTVs [4], we recommend three levels of dose prescription in line with the 

general principles of ICRU: CTV1 for GTV with margin, CTV2 for high-risk 

structures/regions, and CTV3 for intermediate-low risk structures/regions for microscopic 

infiltration. Two commonly used prescription schemes are acceptable: either the 35-fraction 

(2 Gy per fraction) scheme with doses prescribed to 70, 63-60 and 56 Gy; or the 33-fraction 

(2.12 Gy per fraction) scheme with the doses prescribed to 69.96, 63-59.4, and 54 Gy. It 

should be pointed out that current NCCN Guidelines recommend restricting the prescribed 

dose per fraction to ≤2.12 Gy due to concerns about risk of excessive damage to adjacent 
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neurological structures with larger fraction size. [36]  

 

Our final recommendation is to achieve ≥95% dose of the prescribed dose to 100% PTV or 

≥93% dose to ≥99% PTV.  

 

Regarding the issue of dose heterogeneity, we recommend restricting hot-spots ≥75 Gy to 

<10% PTV70 or ≥77 Gy to ≤5% PTV70 as the preferred criteria; and increased this to ≥75 

Gy to <20% PTV70 or ≥77 Gy to ≤10% PTV70 as the acceptable criteria. 

 

We acknowledge that there is an increasing tendency to accept higher dose heterogeneity and 

“hot spot” doses to ensure better dose conformality as suggested by the ICRU 83 report [37] 

or even deliberately giving a higher dose (80 Gy) to certain regions of GTV as a means of 

dose escalation/dose redistribution according to the tumor behavior as visualized on 

molecular imaging [38]; but 15% of panel members recommended to control the upper limit 

of the hot spot dose to not exceed 80 Gy. It is important to emphasize that while there is a 

move towards higher doses within the target volume these areas should be well away from 

the critical OAR – especially the brain stem to prevent any untoward neurological adverse 

events from the treatment itself. 

 

Level of agreement:  

• PTV dose prescription: 81% (17 of 21 voters) agreed to either the 35-fraction (2 Gy 

per fraction) scheme with the doses prescribed to 70, 63-60 and 56 Gy; or the 33-

fraction (2.12 Gy per fraction) scheme with the doses prescribed to 69.96, 63-59.4, 54 

Gy. 

• PTV min: 95% (19 of 20 voters) agreed on desirable dose (alternative variants 

proposed was aim for 100% of the PTV receiving full prescription dose), 90% (18 of 

20 voters) agreed on acceptable dose. 

• PTV hotspot: 86% (18 of 21 voters) agreed on desirable dose, 90% (18 of 20 voters) 

agreed on acceptable dose. 

GRADE of recommendation: High/Moderate for PTVmin; Moderate for PTV hotspot  

 

Temporal lobe:  

The QUANTEC review [39] showed that for conventional fractionation with doses ≤2 Gy, a 
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5% risk of symptomatic radiation necrosis is predicted to occur at an equivalent dose of 72 

Gy (range, 60–84); furthermore, they cautioned that the brain is especially sensitive to 

fraction sizes >2 Gy. Due to the close proximity of the temporal lobes to the nasopharynx, 

multiples studies have been reported in the NPC literature to evaluate the dose-volume effects 

on temporal lobe injury after IMRT. A study by Sun et al. [40] reported that a D0.5cc of 69 Gy 

may be the dose tolerance of the temporal lobe. However, subsequent studies suggested lower 

dose equivalents of 60.3 Gy (D2cc) [41], 62.8 Gy (D1cc) [6, 42] and 69 Gy (Dmax) [42] (at 2 

Gy/fraction) for a 5% probability of developing temporal lobe injury at 5 years. These 

findings concurred with a study reported by Su et al. [43], in which the probability of 

temporal lobe injury was ≤5% at 5 year if D1cc was less than 58 Gy; and Dmax was less than 

68 Gy. Furthermore, the volume of temporal lobe receiving low to moderate doses is also an 

important contributing factor for the development of temporal lobe injury.  

 

On the other hand, for patients with a locally advanced tumor, a reasonable balance between 

adequate tumor coverage and risk of temporal lobe injury is needed; and a dose limit of D1cc 

≤ 71.14 Gy [44] and Dmax ≤72 Gy [1] have been suggested for T4 disease. 

  

The final recommendation of the panel was to aim for a D0.03 cc PRV dose ≤ 65 Gy for T1-2 

tumors and ≤ 70Gy for T3-4 tumors; MAC ≤72 Gy should be confined to T3-4 tumors only. 

Based on the latest literature findings, we also acknowledge that D1cc may be a better 

parameter for future studies. 

 

Level of agreement: 85% (17 of 20 voters) agreed on desirable dose (alternative variants 

proposed ranged from 66-70 Gy irrespective of the tumour stage); 62% (13 of 21 voters) 

agreed on MAC dose for T3-4 tumors (alternative variants proposed were up to 74 Gy, but 

33% would not accept a MAC >70Gy). 

GRADE of recommendation: Moderate  

 

Brachial plexus: 

Damage to the brachial plexus may have a long latency period of 1 to 17 years (average 8.2 

years), but it can lead to significant morbidity of unilateral or bilateral arm or hand 

paraesthesia, weakness, as well as pain and muscular atrophy [45, 46]. A retrospective study 

by Cai et al. showed that patients with a therapeutic dose ≥66.8±2.8 Gy to lower cervical 

lymph node metastasis had a significantly higher incidence of radiation-induced brachial 
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plexopathy [46]. Chen et al. showed that the incidence of brachial plexopathy increased 

dramatically when V70 exceeds 10% [47]. Thus, the brachial plexus should be outlined as an 

OAR as a study has shown that a large proportion of patients were exposed to doses 

exceeding the Radiation Therapy Oncology Group (RTOG) recommended dose constraints 

when the brachial plexus was not outlined [48]. Placing dose constraints on the brachial 

plexus can significantly decrease the irradiated volume and dose, without compromising 

adequate dose delivery to the target volume [49].  

 

In line with the recommendation by RTOG, our final recommendation is to aim at a D0.03 cc 

PRV dose ≤66 Gy, and MAC of ≤ 70 Gy. 

 

Level of agreement: 89% (16 of 18 voters) agreed on desirable dose (alternative variants 

proposed was ≤ 60 Gy); 85% (17 of 20 voters) agreed on acceptable dose (alternative variants 

proposed was ≤ 66 Gy). 

GRADE of recommendation: Moderate  

 

 

Eyeball and lens: 

Jeganathan and colleagues have published an excellent review of ocular risks from orbital 

and periorbital irradiation [50]. Similar to the considerations for the optic nerve, we would 

opt to accept exceeding these recommended MACs for ipsilateral structures if necessary, in 

order to attain adequate tumor dose coverage and the patient has consented to accepting 

increased risk. The contralateral, less involved side should then be kept within the dose 

limits.  

 

Our final recommendation of the eyeball was to aim for a mean dose of ≤35 Gy and MAC of 

D0.03 cc ≤50 Gy. . For the lens, our final recommendation was to aim for a D0.03 cc dose <6 Gy 

and MAC at D0.03 cc dose ≤15 Gy.  

 

Level of agreement:  

• Eyeball: 90% (18 of 20 voters) agreed on desirable dose (alternative variants proposed 

ranged from 25-45 Gy); 76% (16 of 21 voters) agreed on acceptable dose (alternative 

variants proposed ranged from 40-60 Gy). 
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• Lens: 90% (18 of 20 voters) agreed on desirable dose, 82% (18 of 22 voters) agreed 

on acceptable dose. 

GRADE of recommendation: Moderate  

 

 

Pituitary (and hypothalamus) and thyroid glands: 

Even in the IMRT era, it has been reported that a significant number of patients, ranging from 

20-50%, develop some element of endocrine deficiency post-RT [51-56]. We recommend 

including the pituitary gland (and hypothalamus) under Priority 3, while setting the thyroid 

gland as Priority 4, because damage to the thyroid gland will lead to a deficiency of thyroid 

hormone alone and replacement is possible. In contrast, damage to the pituitary results in 

complex dysfunction of multiple hormones including sex hormones, cortisol and thyroid 

pathways, as well as growth hormones.  

 

For the pituitary, we recommend to aim for a D0.03cc dose ≤60 Gy and MAC of D0.03cc dose 

≤65 Gy. However, published data regarding the tolerance of the thyroid gland are scanty. We 

recommend to aim at V50 ≤60%, based on the study by Sachdev et al. (55); and MAC as V60 

≤10 cc. 

 

Level of agreement:  

• Pituitary: 79% (11 of 14 voters) agreed on desirable dose (alternative variants 

proposed ranged from 40-54Gy); 87% (13 of 15 voters) agreed on acceptable dose. 

• Thyroid: 88% (14 of 16 voters) agreed on desirable dose (alternative variants 

proposed were D0.03cc ≤45 Gy or Dmean ≤50 Gy); 89% (16 of 18 voters) agreed on 

acceptable dose (alternative variants proposed was D0.03cc dose ≤50 Gy). 

GRADE of recommendation: Moderate/Low  

 

 

Cochlea:  

Due to the location and pattern of invasion of NPC, hearing impairment is one of the 

commonest toxicities in the IMRT era, especially for those who also receive cisplatin-based 

chemotherapy. QUANTEC [57] recommends that for conventionally fractionated RT, to 

minimize the risk for sensorineural hearing loss (SNHL), the mean dose to the cochlea should 
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be limited to ≤45 Gy (or more conservatively ≤35 Gy). Because a threshold for SNHL cannot 

be determined from the present data, to prevent SNHL the dose to the cochlea should be kept 

as low as possible. The study by Chan et al. [58] showed that the mean cochlea dose and 

concurrent cisplatin dose were important determinants of high-frequency SNHL, with an 

odds ratio of 1.07/Gy increase and 1.008/mg/m2 increase, respectively; it is thus 

recommended that the mean MAC to the cochlea should be lowered to ≤47 Gy for patients 

treated with chemoradiotherapy. Similar findings have been reported by Wang et al. [59], 

with an accumulative cisplatin dose of ≥200 mg/m2 and radiation dose of 40 Gy to 0.1ml 

cochlea being predictive factors for the development of SNHL. 

 

Our final recommended dose was to aim for a mean dose of ≤45 Gy and MAC of mean dose 

≤55 Gy.  

 

Level of agreement: 90% (18 of 20 voters) agreed on desirable dose (alternative variants 

proposed ranged from 28-50 Gy), 86% (19 of 22 voters) agreed on acceptable dose 

(alternative variants proposed ranged from 32-52.5Gy). 

GRADE of recommendation: Moderate  

 

 

Parotid gland: 

QUANTEC [60] recommends that severe xerostomia (long-term salivary function <25% of 

baseline) can usually be avoided if at least one parotid gland has been spared to a mean dose 

of less than 20 Gy or if both glands have been spared to a mean dose of less than 25 Gy. The 

study by Lee et al. [61] concurred that with this dose constraint, less than 33% of patients had 

xerostomia at 3 months and none had it at 12 months. However, this goal might be difficult to 

achieve, especially with larger tumours and those with gross nodal involvement. A study by 

Eisbruch et al. [62] reported that partial volume thresholds for prediction of reduced salivary 

flow were 67%, 45%, and 24% gland volumes receiving more than 15 Gy, 30 Gy, and 45 Gy, 

respectively, showing substantial preservation of salivary flow rates following RT with 

continued improvement over time.  

 

Our final recommendation is to aim for a mean dose of <26 Gy and MAC <30 Gy for ≥50% 

of at least 1 gland. 
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Level of agreement: 90% (18 of 20 voters) agreed on desirable dose (alternative variants 

proposed being mean dose <25Gy); 82% (18 of 22 voters) agreed on acceptable dose 

(alternative variants proposed ranged from mean dose ≤25-35 Gy). 

GRADE of recommendation: Moderate 

 

 

Mandible and temporomandibular joint (TMJ): 

The mandible and the TMJ are subject to late effects of radiation, leading to possible 

osteoradionecrosis (ORN) and joint stiffness of the TMJ. A literature review by Mendenhall 

et al. [63] found that the incidence of ORN is 5% to 10% with a median latency period of 1 to 

2 years or less. The likelihood of ORN depends on a number of factors including primary site 

and extent of disease, dental status, treatment modality, RT dose, volume of mandible 

included in the planning target volume, RT fractionation schedule and technique, and dental 

extractions/root canal work.  

 

In the work of Ben-David et al., half of the patients received at least 70 Gy to ≥ 1% of the 

mandibular volume; no patients developed ≥ grade 2 ORN [64]. Similarly, Gomez et al. 

reported that no patients developed ORN using the dose constraint of Dmax ≤70 Gy. [65] On 

the other hand, investigators from the MD Anderson Head and Neck Cancer Working Group 

reported that the volume effect might be more important than maximum dose. It was found 

that while the mandibular mean dose was significantly higher in the ORN cohort (48.1 vs 

43.6 Gy, p<0.0001), the maximum dose was, in fact, not statistically different. Thus, they 

recommended V44 <42% and V58 <25% to the mandible as reasonable DVH constraints for 

IMRT plan acceptability, when tumour coverage was not compromised [66].  

 

Our final recommendation was to aim for a D2% dose of ≤70 Gy, and MAC ≤75 Gy. 

 

Level of agreement: 95% (18 of 19 voters) agreed on desirable dose, 67% (14 of 21 voters) 

agreed on acceptable dose (alternative variants proposed ranged narrowly from 73-77 Gy). 

GRADE of recommendation: Moderate 

 

 

Oral cavity: 

Excessively high doses to the oral cavity can result in severe mucositis which can lead to 
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unscheduled treatment breaks or failure to complete treatment. Both radiotherapy and 

chemotherapy are independent factors for the risk of incurring acute mucosal toxicities. 

Sanguineti et al. [67] found that concurrent chemoradiotherapy increases the risk of mucosal 

Grade 3 toxicity approximately 4 times over RT alone, and it is equivalent to an extra of 6.2 

Gy to 21 cc of oral mucosa over a 7-week course. For patients receiving induction 

chemotherapy followed by chemo-radiation for head and neck cancer, Bhide et al. [68] have 

derived similar dose response curves. Thus, lower doses to the oral cavity (if achievable) 

should be considered in patients undergoing concurrent chemo-radiotherapy. 

 

Our final recommendation is to aim for a mean dose of ≤40 Gy and MAC of ≤50 Gy.  

 

Level of agreement: 70% (14 of 20 voters) agreed on desirable dose (alternative variants 

proposed ranged from 35-45 Gy); 77% (17 of 22 voters) agreed on acceptable dose 

(alternative variants proposed ranged from 30-70 Gy).  

GRADE of recommendation: Moderate/Low 

 

 

Pharynx and constrictor muscles: 

Swallowing problems following RT increase with the addition of concomitant chemotherapy 

and with increased radiation dose to various structures that are part of the swallowing 

mechanism [69]. While Feng et al. [70] found that all patients who experienced aspiration as 

a late complication received mean pharyngeal constrictor doses of >60 Gy or more than 50% 

of the total pharyngeal constrictor volume received more than 65 Gy (V65 >50%), multiple 

series have reported a steeper dose effect relationship starting beyond 45 Gy to the 

pharyngeal wall. [71-73] Levendag et al. [74] showed that a mean dose of 50 Gy predicted a 

20% probability of late dysphagia; this probability increased sharply at mean dose > 55 Gy 

with the chance of dysphagia increasing by 19% with every additional 10 Gy. QUANTEC 

[75] recommends that with the limited available data available, minimizing the volume of the 

pharyngeal constrictors and larynx receiving ≥60 Gy and reducing, when possible, the 

volume receiving ≥50 Gy is associated with reduced dysphagia/aspiration. 

 

We recommended a Dmean ≤45 Gy, and MAC ≤55 Gy. 

 

Level of agreement: 85% (17 of 20 voters) agreed on desirable dose (alternative variants 
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proposed ranged from 35-50 Gy); 64% (14 of 22 voters) agreed on acceptable dose 

(alternative variants proposed ranged widely from 45-70 Gy). 

GRADE of recommendation: Moderate/Low 

 

 

Larynx: 

The study by Vainshtein et al. [76] on voice and speech outcomes after IMRT to the neck 

region where the larynx is not a target, showed that amongst patients receiving mean glottic 

larynx (GL) doses of ≤20 Gy, >20-30 Gy, >30-40 Gy, >40-50 Gy, and >50 Gy; 10%, 32%, 

25%, 30%, and 63%, respectively, reported worse voice quality at 12 months compared with 

pre-treatment status (P=.011); similar results were also observed for speech impairment.  A 

study by Rancati et al. [77] on the incidence of subacute or late laryngeal oedema after RT for 

head and neck cancers showed a clear volume effect consistent with the parallel architecture 

of the larynx. The authors recommended an equivalent uniform dose of less than 30-35 Gy to 

reduce the risk of G2-G3 oedema. 

 

Initial proposals based on existing guidelines were to aim for mean dose of ≤45 Gy and MAC 

≤55 Gy to the glottic larynx in order to reduce adverse effects on speech and voice quality, as 

well as to avoid laryngeal oedema. However the agreement was only 45% (9/20). Among 

panellists accustomed to lower neck and supraclavicular conventionally planned fields 

matched to the IMRT fields (which effectively shield the larynx), their recommendation was 

to restrict the glottic dose to less than 35 Gy. Basing on the literature of other head and neck, 

a high proportion of panellists feel that attempts should always be made to minimize the 

laryngeal mean dose to less than 35 Gy, particularly as this was often achievable even for 

plans utilising a single whole-neck IMRT field. In a study on oropharyngeal cancers not 

extending to the larynx, a mean dose of 29 Gy was achievable [78].  

 

Level of agreement: the desirable dose finally recommended is 35 Gy and the agreement was 

75% (15 of 20 voters).  

GRADE of recommendation: Moderate 

 

 

Submandibular gland: 

There are scanty data on the tolerance doses of the submandibular gland. A study by 
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Murdoch-Kinch et al. [79] showed that with mean doses <39 Gy, submandibular gland 

salivary flow rates recovered over time at 2.2% per month. The unstimulated salivary flow 

rates decreased exponentially by 3% per Gy increase in mean dose, and this recovered 

substantially over time if mean dose was <39 Gy. Similarly, Murthy et al. [80] found that the 

dose tolerance of submandibular gland leading to a 50% complication risk at 1 year was 36 

Gy with a 2-2.5% reduction in the probability of severe xerostomia for every 1 Gy reduction 

in mean dose. QUANTEC [60] recommends that submandibular gland sparing to modest 

mean doses (<35 Gy) might reduce xerostomia symptoms.   

 

We recommended a mean dose of <35 Gy. No specific recommendation was set for MAC as 

there is no supporting data in the literature. 

 

Level of agreement: 81% (17 of 21 voters) agreed on desirable dose (alternative variants 

proposed included a higher dose of < 39 Gy). 

GRADE of recommendation: Moderate 

 

 

Other structures 

Carotid vessels: 

Chu et al. [81] carried out a population-based cohort study based on the claims data of the 

National Health Research Insurance Database of Taiwan and found that ischaemic stroke 

incidence rates were 2-fold higher in treated NPC patients than in reference populations, with 

a greater relative risk in younger patients. While the exact dose tolerances for the carotid 

vessels have not been well established in the literature, a higher risk of carotid artery stenosis 

following RT for NPC has been reported [82-85]. Although specific recommendations cannot 

be made in view of the lack of supporting data; the dose to the carotid vessels should be 

recorded and kept to as low as reasonably achievable. 

 

No specific recommendation could be made as there is no dose tolerance data in the 

literature. 
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Conclusions 

 

This guideline was derived through extensive review of currently available evidence for 

setting dose prioritization and acceptance criteria to tumour volumes and OARs, 

supplemented by an iterative process of guideline development from an international expert 

panel to put forth best practice recommendations for this complex radiotherapy-treated 

disease. 

 

When initial variants were circulated among the expert panellists, initial levels of agreement 

were low for some parameters, such as doses for the larynx and the thyroid. There seemed to 

be a clear dichotomy between practitioners in the East and West, with Asian experts tending 

to accept higher doses. Although different interpretations of the evidence will always exist, 

through iterative voting and revisions to the initially controversial parameters, summary final 

recommendations were able to be issued by the panel.  

 

The guiding principle should always be ALARP (As Low As Reasonably Practicable), as per 

radiation safety principles. In cases in which there is difficulty in achieving adequate tumor 

coverage and doses while respecting the recommended dose constraints, consideration of the 

relative probability of tumor control balanced against the probabilistic likelihood of normal 

tissue damage should be undertaken. The current guideline provides a practical reference, 

although the final decision on the optimal balance of risk and best possible compromises 

should take into consideration the individual clinical situation and the patient’s own 

preferences. Multicentre collaborations to accumulate more accurate data on the radiation 

planning factors affecting the therapeutic ratio, identification of clinical and 

molecular/genetic factors for prediction of radiation sensitivity or resistance, and prospective 

studies to cautiously explore variants in dose constraints are keenly awaited. 
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Supplementary Material (Appendix) 

Supplementary Table 1: Initial recommendations, % agreement and alternative suggestions.  

Supplementary Table 2: Quality of evidence and definitions 

Supplementary Appendix 1: Literature search summary. 
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NPC-specific protocol H&N protocol 

  
    HKU/ PYNEH 
(10,11) PYNEH 

(10,11) 

RTOG 0225 
(16) 

RTOG 0615 
(17) 

NRG HN001 (18) 
China 
(12) 

AIRO (13) DAHANCA (14) 
Ontario 

(15) 

  Goal Acceptable     Goal Acceptable   Goal Acceptable OAR PRV   

Brainstem  

Max Max Max 0.03 cc Max Max Max Max 

≤54 Gy 
≤60 Gy 

(For T3-4 
only) 

≤54 Gy or 
≤1% vol. >60 

Gy 

≤54 Gy or ≤1% 
PRV >60 Gy 

<54 Gy ≤60 Gy 

≤54 Gy 
≤1% 
PRV 

>60 Gy 

≤54 Gy ≤60 Gy ≤54 Gy ≤60 Gy 
≤54 Gy or 
0.1cc ≤50 

Gy  

Spinal cord 

Max Max Max 0.03 cc Max Max Max Max 

≤45 Gy 
≤50 Gy 

(For T3-4 
only) 

45 Gy or ≤1cc 
vol. >50 Gy 

 ≤45 Gy or ≤1% 
PRV >50 Gy 

<45 Gy ≤50 Gy 

≤45 Gy 
or ≤1% 
PRV 

>50 Gy 

≤44-45 Gy 
or  PRV 
≤44-48 Gy 

46 Gy or  
PRV ≤48-

50 Gy 
≤45 Gy ≤50 Gy 

≤48 Gy or 
0.1cc ≤45 

Gy 

Optical chiasm 

Max Max Max 0.03 cc Max Max (PRV) Max Max 

≤54 Gy 
≤60 Gy 

(For T3-4 
only) 

54 Gy or ≤1% 
vol. >60 Gy 

≤50 Gy or PRV 
≤54 Gy 

<54 Gy ≤56 Gy 
≤50 Gy 
or PRV 
≤55 Gy 

≤54 Gy 
Max ≤60 

Gy 
≤54 Gy ≤60 Gy ≤50 Gy 

GTV-T & GTV-N 

Min                   

≥68.6 
Gy 

(98% 
dose) 

≥66.5 Gy 
(95% dose) 

Not stated Not stated Not stated 
Not 

stated 
Not stated Not stated Not stated 

CTV min Not stated Not stated Not stated 
CTV6996 

- 99 % 
vol. 

  
Not 

stated 
Not stated  CTV1 Not Stated 

  
 

    >65.1 Gy 65.1–60 Gy     95%-107% dose   

   
    

CTV6270 
- 99 % 

vol. 
      CTV2 & CTV3   
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>58.6 
Gy; 

58.6–55 Gy     95% doses   

  
 

    
CTV5940 

- 99 % 
vol. 

          

  
 

    >55.2 Gy 55.2–52 Gy         

  
 

    
CTV5412 

- 99 % 
vol 

          

        >50.2 Gy 50.2–45 Gy         

CTV Hotspot                 
≤1.8 cc >107% 

CTV1 
  

PTV dose 
prescription 

PTV70, 63, 56 PTV70, 59.4 PTV70 PTV6996 PTV70         
PTV70, 
63, 56 

PTV min 

100% 
PTV 

≥95% PTV 
100% dose   

≥99% 
PTV 

95-
98% 
PTV 

≥95% PTV 
100% dose 

≥95% PTV* 100% dose 

≥99% 
PTV 
≥93% 
dose 

Not stated 100% PTV 
≥99 % 

PTV 100% 
dose 

≥95% 
dose 

≥93% 
dose 

≥93% 
dose PTV63, 59.4,54 PTV 6270, 5940, 5412       ≥95% dose 

 or ≥99 % 
PTV ≥95% 

dose 

    
or ≥99% 

PTV 
  

≥95% 
PTV 
100% 
dose 

≥95% 
PTV 
≥95% 
dose 

≥95% 
PTV* 
100% 
dose 

≥90% 
PTV* 

100% dose 
          

    ≥93% dose   
≥99% 
PTV 

                

        
≥93% 
dose 

                

PTV Hotspot 
<10% 
PTV70 
≥75 Gy 

<2% 
PTV70 ≥77 

Gy 

≤20% PTV70 
≥77 Gy 

(110% dose)  

≤20% 
PTV70 
≥77 
Gy  

≤ 40% 
PTV 
≥77 
Gy 

0.03 cc  0.03 cc  
<20% 
PTV 
≥77 Gy 

        
<20% 

PTV1  ≥77 
Gy 

  

≤5% 
PTV70 
≥80 
Gy 

≤ 20%  
PTV ≥ 
80 Gy 

≤80.5 Gy 80.5–84 Gy 

<5% 
PTV 
≥80.5 
Gy 

        

≤1 cc outside   
tissue  ≥77 Gy 

Mean dose ≤74 
Gy 

              
Max mean 
dose ≤73.5 

Gy 

Optic nerve Max Max Max 0.03 cc Max Max (PRV) Max Max 
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≤54 Gy ≤60-66 Gy 
  54 Gy* or  
≤1% vol. >60 

Gy 

≤50 Gy or PRV 
≤54 Gy 

0.03 cc 
≤54 Gy 

0.03 cc ≤56 
Gy 

  ≤ 50 
Gy or 
PRV 
≤55 Gy 

≤54 Gy  ≤60 Gy  ≤54 Gy ≤60 Gy 
Max ≤50 

Gy 

Temporal lobes 

1cc Max Max     0.03 cc Max Max Max   

<65 Gy <72-75 Gy 
60 Gy or  

≤1% vol. >65 
Gy 

Not stated  <70 Gy ≤72 Gy 

≤60 Gy 
or  ≤1% 
vol. >65 

Gy 

≤60 Gy  ≤65 Gy  ≤60 Gy Not stated 

Mandible & TM 
joint 

≤1cc ≤1cc ≤1cc 0.03 cc ≤1cc  Max mandible   Max 0.1cc 

>70 Gy  >75 Gy 
>75 Gy or  
Max 70 Gy 

>75 Gy or Max 
70 Gy 

≤70 Gy ≤75 Gy 
>75 Gy 
or Max 
≤70 Gy  

≤70-73.5 
Gy; ≤0.1cc 
joint > 70 

Gy  

≤75-77 Gy  Not stated 

Joint ≤70 
Gy; 

mandible 
≤75 Gy 

Brachial plexus 

≤1 cc   Max 0.03 cc Max Max     Max 

>66 Gy Not stated ≤66 Gy <66 Gy ≤70 Gy ≤66 Gy ≤60 Gy  ≤66 Gy  Not stated ≤63 Gy 

Parotid glands (at 
least one gland) 

Mean 
of 1 

gland 

≥≥≥≥50% of 1 
gland    

Mean of 1 
gland 

Mean of 1 
gland 

Mean of 1 gland Mean 
Mean of 1 

gland 
≥≥≥≥60% of 1 

gland    Mean  
Mean of 1 

gland 

<26 Gy <30 Gy 

<26 Gy;  
³50% of 1 

gland <30 Gy; 
or ≥20cc of 
both glands 

<20 Gy 

<26 Gy; or  
³50% of 1 gland 

<30 Gy; or 
≥20cc of both 
glands <20 Gy 

<26 Gy 26–33 Gy 

one 
gland: 

<20 Gy; 
both 

glands: 
<25 Gy 

<26 Gy; or  
³50% of 1 
gland <30 

Gy; or ³33% 
of 

contralateral 
gland <40 

Gy   

. <30 Gy 
both glands: ≤26 
Gy; contralateral 
gland: ≤20 Gy 

<26 Gy; or  
³50% of 1 
gland <30 

Gy; or 
≥20cc of 

both 
glands <20 

Gy 

Parotid Gland 
(stem cell region) 
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Pituitary  

Max         Mean Max Mean   

≤60 Gy ≤65 Gy Not stated Not stated Not stated ≤50 Gy ≤50 Gy ≤30 Gy Not stated  

Lens 

Max   Max 0.03 cc Max Max     Max 

≤6 Gy ≤10 Gy Not stated < 25 Gy <15 Gy ≤25 Gy <4 Gy <6 Gy Not stated ≤5 Gy 

Eyeball 

Max Mean Mean Max 0.03 cc Max Retina - Max Max Max 

≤50 Gy <35 Gy <35 Gy <50 Gy <55 Gy ≤50 Gy ≤54 Gy ≤60 Gy  

Retina: 
≤45 
Gy; 

Other 
parts: 
≤30 Gy 

Retina: 
≤50 
Gy; 

Other 
parts: 
≤35 Gy 

≤50 Gy 

Cochlea 

Mean Mean ≤5% vol. 0.03 cc Mean Mean Mean Max 

<50 Gy ≤55 Gy <50 Gy ≥55 Gy ≤55 Gy ≤45 Gy <50 Gy  <52.5 Gy  
≤45 Gy or  ≤5% 

vol. ≥55 Gy 
≤45 Gy 

Glottic larynx 

Mean Mean Mean Mean Mean Max   Mean Mean 

<45 Gy <45 Gy <45 Gy <40 Gy ≤45 Gy 

supraglottis 
< 66 Gy; 

whole 
larynx: <50 

Gy; or 
≤25% 

vol.>50 Gy 

  ≤44 Gy 
≤45 Gy or 
≤67% vol. 

>50 Gy 

Post-cricoid 
pharynx, 
esophagus (within 
field) 

Mean   Mean Mean Mean Max Mean Mean 

<45 Gy Not stated <45 Gy <50 Gy ≤45 Gy 

Esophagus: 
≤45 Gy; 

pharyngeal 
constrictor 

muscle: ≤50 
Gy 

Esophagus: 
<55 Gy 

≤ 30 Gy 

Esophagus: 
≤45 Gy;                       

pharyngeal 
constrictor 

muscle: 
≤50 Gy 

Oral cavity Mean Max Mean Mean Mean     Mean Mean 
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(excluding PTV) 

<40 Gy <50 Gy 
Tongue: <55 
Gy or ≤ 1% 
vol. >65 Gy 

<40 Gy <40 Gy 
Mean 
≤40 Gy 

Not stated  Not stated ≤30 Gy  ≤40 Gy 

Submandibular 
gland 

        Mean Mean   Mean   

Not stated Not stated Not stated Not stated <35 Gy <35 Gy Not stated <35 Gy Not stated 

Lips 

              Mean   

Not stated Not stated Not stated Not stated 
Not 

stated 
Not stated  ≤20 Gy Not stated 

Thyroid           
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Organ at Risk (OAR) 
Acceptance Criteria   

  Desirable Dose Acceptable Dose   

Organ Priority 

% Agree Disagree 

Specification Dose 
% agree 

 (of those who 
voted) 

Dose 
% agree 

 (of those who 
voted) 

  

(of those who 
voted) 

(alternative 
priority) – 
Number 
voting 

GRADE of 
recommendation 

      

Brainstem 1 
17/17 

  D0.03 cc ≤54 Gy 
18/20 

≤60 Gy# 
19/21   

100% 90% 90% High/Moderate 

        

Spinal cord 1 
17/17 

  D0.03 cc ≤45 Gy 
20/20 

≤50 Gy  
20/21   

100% 100% 95% High 
        

Optic chiasm 1 
16/17 

(3) – 1/17 D0.03 cc ≤54 Gy 
14/15 

≤60 Gy  
14/17   

94% 93% 82% High/Moderate 

        

GTV-T & GTV-N 2 
10/16 

(1) – 6/16 Min ≥68.6 Gy (98% dose) 
14/18 

66.5 Gy (95% dose) 
16/20   

63% 78% 80% Moderate 
        

PTV dose 
prescription 

2 
15/17 (1) – 1/17 

Prescription 
dose  

PTV70, 63, 60, 56 = 35#                                                                
PTV 69.96, 63, 60, 54 = 33# 

17/21 

      

88% (4) – 1/17 81%   
        

PTV min 2 

13/15 (1) – 1/15 

Min 

≥95% PTV 100% or 19/20 

95% PTV ≥ 95% dose 

18/20   

87% (4) – 1/15 ≥99% PTV ≥93% dose 95% 90% High / Moderate 

            

PTV hotspot 2 
14/15 

(4) – 1/15 Max 
<5% PTV70 ≥ 75 Gy  or     18/21 

<10% PTV70 ≥75 Gy or       
≤20% PTV70 ≥77 Gy 

18/20   

93% ≤10% PTV70 ≥77 Gy 86% 90% Moderate 
          

Temporal lobe  2 

11/17 (1) – 1/17 

D0.03 cc 
≤65 Gy for early stage and 
≤70 Gy for late stage 

17/20 

≤72 Gy 

13/21   
65% (3) – 4/17 85% 62% Moderate 

  (5) – 1/17       
          

Optic nerve 

3 12/17 (1) – 2/17 

D0.03 cc ≤54 Gy 

19/20 

≤60 Gy 

21/22   
Bilateral: 

1 
71% (2) – 2/17 95% 95% High / Moderate 

    (3) – 1/17       
            

Parotid gland 4 
12/17 (2) – 2/17 

Mean        <26 Gy 
18/20 

<30 Gy (at least one 
gland)  

18/22   

71% (3) – 2/17 90% 82% Moderate 
  (5) – 1/17       
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Mandible & TM 
joint 

4 
14/17 (3) – 2/17 

D2% ≤70 Gy 
18/19 

≤75 Gy 
14/21   

82% (5) – 1/17 95% 67% Moderate 
          

Brachial plexus 3 
13/15 (2) – 1/15 

D0.03 cc <66 Gy 
16/18 

≤70 Gy 
17/20   

87% (5) – 1/15 89% 85% Moderate 
          

Pituitary  

4 

11/14 (2) – 1/14 

D0.03 cc ≤60 Gy 

11/14 

≤65 Gy 

13/15   
(and 
hypothalamus) 

79% (3) – 1/14 79% 87% Moderate / Low 

    (5) – 1/14       
            

Lens 3 

12/17 (1) – 1/17 

D0.03 cc ≤6 Gy 

18/20 

≤15 Gy 

18/22   
71% (4) – 2/17 90% 82% Moderate 

  (5) – 2/17       
          

Eyeball  3 
14/17 (2) – 2/17 

Mean <35 Gy 
18/20 

≤50 Gy  ( D0.03 cc ) 
16/21   

82% (4) – 1/17 90% 76% Moderate 
          

Cochlea 4 
13/17 (2) – 2/17 

Mean  ≤45 Gy 
18/20 

≤55 Gy 
19/22   

76% (3) – 2/17 90% 86% Moderate 
          

Glottic larynx 4 

16/17 

(3) – 1/17 Mean 

≤35 Gy 15/20 

≤50 Gy  ( D2% ) 

10/22   
94%   75% 45%   

   
 
 

  Moderate 

          

Post-cricoid 
pharynx, 
esophagus (within 
field) 

4 
13/17 (3) – 2/17 

Mean  ≤45 Gy 
17/20 

≤55 Gy 
14/22 

Moderate / Low 
76% (5) – 2/17 85% 64%   

Oral cavity 
(excluding PTV) 4 

13/17 (3) – 2/17 

Mean  <40 Gy 

14/20 

<50 Gy 

17/22   
76% (5) – 2/17 70% 77% Moderate / Low 

  
      

  

Submandibular 
gland 
 

4 
13/14 

(5) – 1/14 Mean  <35 Gy 
17/21 

    
  

93% 81% Moderate 
      

Thyroid 4 
12/14 (3) – 1/14 

  V50<70% 
14/16 

VS60> 10cc 
16/18   

86% (5) – 1/14 88% 89% 
Moderate / Low 
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Table 2. OAR prioritization and Acceptance Criteria - final agreement results. 

 
#A recent study by Huang et al [19] suggested Dmax of 67.4 Gy (equivalent dose in 2-Gy fractions) as the dose constraint for brainstem. While this may be discussed as an option for patients with tumors encroaching the 

brainstem, a conservative dose acceptance criterion (to aim for a D0.03 cc PRV dose ≤54 Gy and MAC of 60 Gy) was preferred among our panel (25/25 [100%] of those who responded to this special vote) for this general 

guideline till more robust validation become available. 

 

 
 


