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Chapter 13
Cyclic AMP Signalling in Pancreatic Islets

Brian Furman, Wee Kiat Ong, and Nigel Pyne

Abstract Cyclic 3’5’AMP (cAMP) is an important physiological amplifier of
glucose-induced insulin secretion by the pancreatic islet β-cell, where it is formed
by the activity of adenylyl cyclases, which are stimulated by glucose, through
elevation in intracellular calcium concentrations, and by the incretin hormones
(GLP-1 and GIP). cAMP is rapidly degraded in the pancreatic islet β-cell by var-
ious cyclic nucleotide phosphodiesterase (PDE) enzymes. Many steps involved in
glucose-induced insulin secretion are modulated by cAMP, which is also impor-
tant in regulating pancreatic islet β-cell differentiation, growth and survival. This
chapter discusses the formation, destruction and actions of cAMP in the islets with
particular emphasis on the β-cell.

Keywords Cyclic AMP · Adenylyl cyclase · Phosphodiesterase · Insulin
secretion · Protein kinase A · Epac · GLP-1

13.1 Introduction

Interest in the role of cyclic 3’5’ AMP (cAMP) in regulating insulin secretion dates
back more than 40 years, since Turtle and Kipnis [1] showed increases in cAMP in
isolated islets in response to glucagon. Increases in islet β-cell cyclic AMP occur
in response to nutrients, especially glucose. Glucose has been widely shown to
increase intracellular levels of cAMP in islets and various insulin-secreting cell
lines [2–6]. Although cyclic AMP does not appear to be essential for glucose-
induced insulin secretion [3, 7–9], it is established as an important intracellular
amplifier of this process [10–12]. Several hormones exert their effects on insulin
secretion through increased β-cell cAMP levels. These include glucose-dependent
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insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) which are
collectively referred to as the incretins, and which are also secreted in response
to nutrients [13–16]. GLP-1 and GIP serve to augment meal-related insulin secre-
tion [17]. Their physiological importance is evident from observations that mice
lacking receptors for both incretin hormones show marked glucose intolerance
and impairment of insulin secretion [18]. This chapter focuses largely on cAMP
in the β-cell. Much less is known about the role of cAMP in other islet cells,
although there is some information on this in relation to glucagon and somato-
statin secretion/synthesis and these aspects will be addressed briefly at the end of
the chapter.

13.2 Control of cAMP Levels in the β-Cell

The level of cyclic AMP in the β-cell depends on the balance between its forma-
tion through the activity of adenylyl cyclases (ACs) and its destruction by cyclic
nucleotide phosphodiesterases (CN-PDEs). This is summarized in Fig. 13.1 and
discussed below.

13.2.1 Formation of Cyclic AMP in the β-Cell

Glucose-induced elevations in intracellular cAMP are probably secondary to
changes in the concentration of calcium, which is itself elevated as a result of
a number of mechanisms but primarily by Ca2+ influx through voltage-sensitive
Ca2+ channels in response to membrane depolarization, following closure of ATP-
sensitive potassium channels. Hormone-induced formation of cAMP results from
stimulation of seven transmembrane G-protein-coupled receptors (GPCRs), leading
to activation of the Gs protein and dissociation of the Gαβγ heterotrimeric complex
and sequential activation of adenylyl cyclases [19]. The β-cell expresses several
GPCRs coupled to Gs, stimulation of which leads to elevation in the β-cell level
of cAMP. These include receptors for GLP-1, GIP, PACAP as well as the receptor
GPR119 (see below). On the other hand, reductions in cAMP occur in response
to several agents that activate GPCRs coupled to Gi, for example adrenaline [20],
PGE2 [21] and NPY (Y1) [22]. There is also evidence for the role of the pertussis
toxin-insensitive G-protein Gz in the reduction of cAMP and inhibition of insulin
secretion in response to prostaglandin E1 [23].

GLP-1, through stimulation of its Class II GPCR, activates AC with consequent
production of intracellular cAMP [24, 25]. Oxyntomodulin, which like GLP-1, is
derived from the proglucagon gene, also binds to the GLP-1 receptor, increases
cAMP levels and stimulates insulin secretion [26]. There is also evidence for cou-
pling to Gi/Go, and, in various, non-β-cell systems to other G-proteins (Gq/11α),
although the physiological significance of this remains to be established. Sonoda et
al. [27] identified an unusual role for β-arrestin-1 in coupling the GLP-1 receptor to
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Fig. 13.1 Summary of the mechanisms for the formation and destruction of cAMP in the pan-
creatic islet β-cell. Glucose is transported into the β-cell using GLUT2 and is then metabolized
generating ATP. This results in closure of the KATP channel, membrane depolarization and calcium
influx through voltage-sensitive calcium channels. Calcium is also mobilized from intracellu-
lar stores by Ca2+ (calcium-induced calcium release – not shown). The increased cytosolic-free
Ca2+ triggers exocytosis. These processes are amplified through increases in cAMP effected
both through activation of adenylyl cyclases by glucose itself (through calcium-activated adeny-
lyl cyclase – type VIII- AC VIII) and by the incretin hormones GLP-1 and GIP, acting through
G-protein-coupled receptors in the β-cell membrane. Endogenous agonists for the G-protein-
coupled receptor GPR119 include oleoylethanolamide (OEA). Activation of GLP-1 receptors acts
synergistically with glucose in activating AC VIII and also activates other adenylyl cyclases,
including soluble adenylyl cyclase (not shown). Activation of adenylyl cyclases increases the for-
mation of cAMP which activates PKA and Epac which mediate the actions of cAMP in the cell.
PKA/Epac facilitates calcium-induced calcium release which in turn may also activate AC VIII.
The destruction of cAMP is effected through various phosphodiesterases (PDEs). Ca2+ activates
PDE1 whereas PKA activates PDE3B, which is also activated by other signals generated through
the IGF-1 and leptin receptors, as well as, possibly, the insulin receptor. On the other hand, PDE3B
may be inhibited by increases in cGMP, allowing cross-talk between cGMP and cAMP signalling.
Roles for other PDEs (PDE4, 8B and 10A) have been proposed (modified from [54])

adenylyl cyclase in INS-1 cells, thereby increasing cAMP and stimulating insulin
secretion.

GIP produces its biological effects by interacting with its Class II G-protein-
coupled receptor coupled to the production of cyclic AMP [28–30]. The pancreatic



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

282 B. Furman et al.

islet β-cell GIP receptor is down-regulated by exposure to high concentrations of
glucose, which prevents the GIP-induced elevation in intracellular cAMP [31]. This
is hypothesized to explain the lack of response of diabetic patients to the peptide.

PACAP is expressed in nerve fibres and the pancreatic islets and is a potent
stimulator of insulin secretion [32, 33] through activation of adenylyl cyclase [34].
There are several receptors for PACAP, with the PAC1 receptor (PAC1-R) and
VPAC2 receptor (VPAC2-R) thought to be the most important in relation to insulin
secretion [35].

GPR119 is a Class I GPCR, the expression of which is restricted largely to
pancreatic islets, although lesser amounts of message are detected in the human
gastrointestinal tract and in the rodent brain [36–38]. The potential endogenous
ligands for this receptor so far identified are oleoyl lysophosphatidylcholine and
oleoylethanolamide, although there is as yet no evidence that they are available in
sufficient concentrations in the blood to stimulate the β-cell GRP119 receptor in
vivo. The receptor is coupled through Gs to adenylyl cyclase, and its activation
produces an increase in cAMP and stimulation of insulin secretion.

13.2.1.1 Adenylyl Cyclases in the Pancreatic Islet β-Cell

There are at least nine different membrane-bound isoforms of AC, described as
AC I–AC IX and expressed in mammalian cells [39, 40]. An additional, soluble
form is also expressed in certain mammalian cells [41]. RT-PCR studies, as well as
immunohistochemical staining, using rat and human islets, rat β-cells, and clonal
β-cell lines have shown expression of AC II [42] and III, IV, V, VI, VII and VIII
[5, 43–45]. All isoforms of adenylyl cyclase, apart from ACIX, are activated by the
diterpene forskolin, which produces marked increases in cAMP in numerous cell
types [46, 47]. There are three calcium-activated ACs (AC1, ACIII and ACVIII),
and the presence of calcium–calmodulin-activated ACVIII probably explains activa-
tion of cyclic AMP formation in response to glucose, which rapidly elevates [Ca2+]i.
This AC isoform is synergistically activated by both Gsα and calcium/calmodulin
[48]. Thus, the combination of glucose and GLP-1 increases cAMP accumulation in
rat isolated primary β-cells or clonal β-cell lines more markedly than either alone,
the effect being reduced if calcium entry through voltage-sensitive L-type channels
is prevented using verapamil [45]. The expression of type VI (but not types II, III or
V) adenylyl cyclase was increased along with the expression of the GLP-1 receptor
rat pups fed a high-carbohydrate diet for 12 days [42]. These findings provide some
circumstantial evidence that the type VI adenylyl cyclase may be associated with
GLP-1 signalling. More recently, a role for soluble AC was proposed to explain
the different kinetics of cAMP formation in response to glucose and GLP-1 in
INS-1E cells. GLP-1 produced a rapid increase as a result of activation of transmem-
brane AC, whereas the increase in cAMP in response to glucose was delayed and
was attributed to activation of the calcium, bicarbonate and ATP-sensitive soluble
AC [6].

Paradoxically, acetylcholine, which increases insulin secretion through stimula-
tion of muscarinic receptors coupled to phospholipase C/protein kinase C pathways,
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also activated adenylyl cyclases and elevated cAMP content in islets from GK-
diabetic rats [49]. The insulin secretory response to acetylcholine in these islets was
blocked by inhibitors of adenylyl cyclase or PKA inhibitors. The abnormal nature of
the islet in these rats may somehow has facilitated cross-talk resulting in activation
of a calcium-sensitive adenylyl cyclase, or a PKC-sensitive adenylyl cyclase, e.g.
ACII [40], in response to acetylcholine.

13.2.2 Destruction of cAMP in the Pancreatic Islet β-Cell -Cyclic
Nucleotide Phosphodiesterases

Cyclic nucleotide phosphodiesterases (CN-PDEs) provide the only known means
for the rapid inactivation of the cyclic nucleotides cAMP and cGMP in most cells.
There are now known to be at least 100 PDE enzymes derived from 11 known
gene families (PDE1-11). The enzymes show differences in their tissue distribution,
substrate selectivities (cGMP vs cAMP), kinetics, regulation, and susceptibility to
pharmacological inhibition. There are several excellent reviews [50–53], and the
properties of those PDE enzymes present in pancreatic islets have been reviewed
elsewhere [54, 55]. The key observations are summarized in this chapter, together
with more recent findings.

Several PDE isoforms, including PDE1 [56–61], PDE3B [59–67], PDE4 [59, 60,
64] and PDE8B [68], contribute to the total β-cell PDE activity, and several of these
isoforms regulate glucose-induced insulin secretion and other cAMP-mediated β-
cell functions in islets and in cell lines [see 54, 55 for references]. There is much
evidence from RT-PCR, immunostaining, siRNA and biochemical and functional
studies using selective inhibitors that PDE3B plays a key role in both islets and
insulin-secreting cell lines in terms of regulating insulin secretion [54, 55, 61, 63–
66]. Additional evidence for the role of PDE3B in regulating β-cell cAMP and
insulin secretion was obtained by over-expressing PDE3B in the INS-1 β-cell line
and in islets and by using transgenic animals over-expressing PDE3B in the β-
cell. These in vitro and in vivo studies clearly showed that glucose-induced, as
well as GLP-1-induced, insulin secretion was impaired by PDE3B over-expression.
Interestingly, both endogenous and over-expressed PDE3B was found to be located
in insulin granules and the plasma membrane [67]. In vitro, the over-expression of
PDE3B markedly reduced cAMP-induced exocytosis and animals over-expressing
PDE3B in islets showed markedly impaired glucose tolerance [65–67]. In addition,
activation of PDE3B appears to mediate the effect of IGF-1 [63] and leptin [69] in
inhibiting insulin secretion.

The role of cGMP in regulating insulin secretion is not established, but several
studies have shown that nitric oxide, acting through a soluble guanylyl cyclase and
GMP formation, augments insulin secretion through several mechanisms shared
with cAMP (see Section 13.3.1) [70–73]. These observations might be explained
by cGMP-dependent inhibition of PDE3B and concomitant increases in [cAMP]i.
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Although evidence for the importance of PDE3B is widely supported there is also
evidence, but no consensus, for roles for other PDEs. Roles for PDE1C and PDE4
have been suggested on the basis of the use of either selective inhibitors [59, 64] or
siRNA [64]. Depletion of PDE8B using siRNA produced a marked enhancement of
glucose-induced insulin secretion from INS-1E cells [64, 68] and rat islets [68]. A
role for PDE10A has been proposed and selective inhibitors have been patented for
the treatment of diabetes [74], but there is no consensus on the expression of this
PDE in the β-cell, and in one study [64] selective knockdown of PDE10A failed to
modify glucose-induced insulin secretion in INS-1 cells.

13.2.3 Dynamics of cAMP Formation and Destruction

Real-time measurements of changes in cAMP in β-cells or islets have been hugely
facilitated by the development of new technologies, particularly the development of
genetically encoded fluorescence resonance energy transfer (FRET)-based biosen-
sors and the associated imaging techniques. These have either been transiently
transfected into β-cell lines or primary β-cells [5, 75–78] or been incorporated
in vivo by generating a transgenic mouse expressing a pancreatic β-cell-targeted
cAMP reporter which was inducible in response to tetracycline [4]. In MIN6 β-
cells, the use of the biosynthetic FRET-based cAMP sensor Epac1-camps, together
with FURA-2 to detect [Ca2+]i, showed a close coupling of changes in cAMP and
[Ca2+]i [5]. Exendin-4 and forskolin induced pronounced FRET signals. Formation
of cAMP in response to these agents was preceded by increases in [Ca2+]i and
was dependent upon extracellular calcium. Moreover, increases in [Ca2+]i evoked
by other agents (carbachol, K+, and tolbutamide) also stimulated cAMP formation.
Simultaneous imaging of [Ca2+]i and cAMP during glucose stimulation (in the pres-
ence of TEA) revealed a tight coupling between oscillations in [Ca2+]i and cAMP
with peak cAMP concentrations being seen at the nadir of [Ca2+]i. The data are
consistent with the possibility that Ca2+-activated adenylyl cyclases (AC VIII or
AC III) and PDEs (PDE1C?) contribute to the oscillatory changes in cAMP seen
in these studies. How this concept fits with the widely accepted role of PDE3B in
regulating the cAMP pool relevant to insulin secretion (Section 13.2.2) remains to
be determined. Other experimental studies (Fig. 13.2) and mathematical modelling
have supported these ideas [75]. Imaging of the islets from transgenic mice express-
ing a β-cell-targeted reporter showed a rapid, biphasic and concentration-dependent
(5.5–35 mM) increase in cAMP in response to glucose. This preceded increases in
[Ca2+]i and was independent of extracellular [Ca2+] [4]. In INS-1 cells, GLP-1 pro-
duced marked oscillations in cAMP at low concentrations (0.3–1 nM) with higher
concentrations (10 nM) producing more sustained elevations [77]. GLP-1 also pro-
duced marked Ca2+ spiking, which rapidly followed the increases in cAMP. This
pattern of changes in cAMP and Ca2+ was mimicked by application of short pulses
of the non-selective PDE inhibitor, IBMX. The rapidity of the cAMP-induced Ca2+

signal suggests a close proximity of the cAMP to the sites of calcium entry/release
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Fig. 13.2 Ca2+ and cAMP oscillations in glucose-stimulated MIN6 cells. Simultaneous imaging
of cytosolic cAMP concentration ([cAMP]i; top trace, R485/535) and cytosolic Ca2+ concentration
([Ca2+]i; bottom trace, R340/380) in a single MIN6 cell stimulated with 20 mM glucose and 20 mM
tetraethylammonium chloride (TEA). Note that second messenger oscillations were out of phase,
with each [Ca2+]i spike coupled to a rapid and transient reduction in [cAMP]i. (Reproduced from
Fridlyand LE, Harbeck MC, Roe MW, Philipson LH. Regulation of cAMP dynamics by Ca2+ and
G protein-coupled receptors in the pancreatic beta-cell: a computational approach. Am J Physiol
Cell Physiol 293: C1924–33, 2007 [75] with permission)

(see next section). On the other hand, translocation of the catalytic subunit of PKA to
the nucleus occurred relatively slowly and only in response to sustained increases in
cAMP. Glucose also induced oscillations of intracellular cAMP levels in MIN6 and
mouse primary β-cells. These oscillations correlated with pulsatile insulin secretion
and both cAMP oscillations and pulsatile insulin release were reduced by inhibiting
adenylyl cyclases [78]. Forskolin, glucagon and IBMX all augmented the frequency
of glucose-induced oscillations in [Ca2+]i in mouse pancreatic islets [79]

13.2.4 Intracellular Compartmentalization of cAMP Formation,
Action and Degradation

It is now established that intracellular cAMP is not uniformly distributed in the cell
and exists in different cellular locations to fulfil different functions. Localgeneration,
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hydrolysis and activity of cAMP are ensured by spatial distribution into compart-
ments, or signalling complexes, of adenylyl cyclases, PDEs and effector proteins,
as well as phosphatases that terminate the activity of various kinases (e.g. 80, 81).
This spatial anchoring of signalling complexes is effected by a family of A-kinase
anchoring proteins (AKAPs). Recent work has suggested the importance of AKAPs
in the insulin-secreting β-cell. Peptides that competitively inhibit the interaction
between the regulatory subunit of PKA and the AKAP inhibited GLP-1-induced
insulin secretion from rat islets without modifying its ability to elevate intracellu-
lar cAMP [9]. Expression of this inhibitory peptide in the clonal rat β-cell line,
RINm5F, resulted in a redistribution of the PKA regulatory subunit and inhib-
ited elevations in [Ca2+]i and insulin secretion in response to a cAMP analogue.
Expression of an AKAP (AKAP18) in clonal insulin-secreting cells (RINm5f) aug-
mented GLP-1-induced insulin release, whereas expression of a mutant form in
these cells was inhibitory [82]. These findings were supported by others [83] who
used a cell-permeable peptide (TAT-AKAPis) to competitively inhibit PKA–AKAP
interactions in INS-1 cells. This peptide disrupted PKA–AKAP interactions and
inhibited both glucagon-induced augmentation of insulin secretion and phosphory-
lation of p44/p42 MAPKs and cAMP response element binding protein. While rela-
tively little is known about the role of phosphatases in terminating phosphorylation-
mediated actions of cAMP in the pancreatic islet β-cell [84], there is evidence that
the AKAP AKAP79 (the human homologue of AKAP150) is important in targeting
the serine–threonine phosphatase PP2B to PKA-sensitive target proteins [85].

13.3 Functions of Cyclic AMP in the Pancreatic Islet β-Cell

cAMP modulates a number of β-cell functions including insulin secretion, insulin
synthesis, β-cell replication, and β-cell apoptosis. Actions of cAMP in general
are mediated by at least two distinct mechanisms. The first of these is through
protein kinase A (PKA)-mediated phosphorylation [86]. However, a second, and
PKA-independent, effect of cAMP on insulin secretion [87–88] is mediated by the
cyclic AMP-binding proteins known either as cAMP-regulated guanine nucleotide
exchange factors (GEFs) or as exchange proteins activated by cAMP (Epacs)
which target the small G-protein Rap1 [86]. Interestingly, most of the β-cell
Rap1, at least in MIN6 cells, appears to be co-localized with insulin secretory
granules [89]. When activated by cAMP, Epac, which exists as two isoforms
(Epac1 and Epac2) exchanges GDP for GTP and activates downstream sig-
nalling. The pancreatic islet β-cell expresses both Epac1 and Epac2 [90]. Antisense
oligodeoxynucleotides against Epac reduced the effect of a permeant cAMP ana-
logue in augmenting glucose-induced insulin secretion in pancreatic islets [91].
Studies using selective inhibitors/activators of PKA, selective activators of Epac
or the use of dominant-negative forms of Epac are revealing the roles of Epacs
vs PKA in the β-cell. Novel cAMP analogues, such as 8-(4-chlorophenylthio)-2′-
O-methyladenosine-3′-5′-cyclic monophosphate (8-pCPT-2′-O-Me-cAMP), and its
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much more cell-permeant acetoxy methyl ester [92] activate Epac but not PKA,
having a 100-fold lower affinity for PKA relative to Epac [86]. Similarly, cAMP
analogues such as N6-Bnz-cAMP selectively activate PKA relative to Epac. Both
Epac and PKA mediate the effects of cAMP on insulin secretion. However, at least
in INS-1 cells, PKA-mediated effects account for the greater proportion of cAMP
effects [92]. There is evidence for interaction between PKA-mediated and Epac-
mediated effects in augmenting insulin secretion in native β-cells [93]. Some of
the reported discrepancies may be explained by the poor cell permeability of some
Epac-selective cAMP analogues [92].

The cyclic AMP-mediated effects of GIP and GLP-1 on insulin secretion involve
both PKA [24] and PKA-independent actions. The latter are probably mediated
through Epac, as evidenced by the comparative effects of the PKA inhibitor H89
and antisense oligodeoxynucleotides (ODNs) against Epac in reducing incretin-
augmented insulin secretion [91, 94]. Interestingly, Epac-dependent effects of
cAMP on insulin release are impaired in islets from mice lacking the SUR subunit
of the KATP channel [94, 95].

13.3.1 Insulin Secretion

Malaisse’s group was the first to systematically examine the actions of cAMP
on insulin secretion [96, 97]. Elevations in cAMP in the β-cell augment glucose-
induced insulin secretion at several sites in the secretory pathway.

13.3.1.1 Effects on the β-Cell ATP-Sensitive Potassium Channel

The β-cell ATP-sensitive potassium channel (KATP channel) plays a fundamental
role in glucose-induced insulin secretion. Elevation of cAMP in the β-cell using
GLP-1, forskolin, or the non-selective PDE inhibitor IBMX inhibits the β-cell KATP
channel promoting depolarization of the cell [98–103]. This effect was reported to
be mediated via PKA in INS-1 cells [101] through phosphorylation of the SUR1
subunit. On the other hand, Epac was found to inhibit this channel in both human
β-cells and INS-1 cells, producing a leftward shift in the ATP-concentration–effect
curve [102, 103]. The same study [103] suggested a PKA-mediated activation of
the ATP-sensitive K channel.

13.3.1.2 Voltage-Sensitive Potassium Channels

Activation of voltage-sensitive potassium channels contribute to a restoration of
the β-cell membrane potential and a termination of insulin secretion. GIP, acting
through a PKA-dependent mechanism, reduced K currents through voltage-sensitive
potassium channels in HEK cells transfected with the GIP receptor and Kv1.4 chan-
nels, as well as in human islets and INS-1 cells [104]. GLP-1 and the GLP-1 mimetic
exendin-4 also inhibited voltage-dependent K currents effects again being PKA
dependent as evidenced by the preventative effects of PKA inhibition [105, 106]
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13.3.1.3 Elevations in Intracellular Calcium [Ca2+]i

Increases in [Ca2+]i can be effected through two main mechanisms, namely influx
through voltage-sensitive Ca2+ channels and mobilization of Ca2+ from intracellular
stores and cAMP influences both these mechanisms in the β-cell.

Voltage-Sensitive Ca2+ Channels

Entry of Ca2+ through L-type voltage-sensitive calcium channels in response to
membrane depolarization is an important trigger for exocytosis. Agents elevating
cAMP as well as cAMP itself augment the opening of channel and increase calcium
influx [99, 107–109] through PKA-dependent mechanisms. This is consistent with
observations that forskolin and IBMX were shown to produce phosphorylation of
the cardiac-type alpha 1 subunit of the voltage-sensitive calcium channel in a mouse
β-cell line βTC3 [110].

Mobilization of Ca2+ from Intracellular Stores

Calcium-Induced Calcium Release

In addition to facilitating calcium entry, agents that elevate β-cell cAMP also
promote calcium-induced Ca2+ release [111–116]. For example, the uncaging of
calcium from a membrane-permeable caged calcium (NP EGTA) produced a large,
transient increase in [Ca2+]i but only in the presence of the GLP-1 mimetic exendin 4
or the adenylyl cyclase activator forskolin. This could be replicated by non-selective
cAMP analogues or those that selectively activated either PKA or Epac. The effects
of exendin-4 were relatively insensitive to the PKA inhibitor H89 but were inhibited
by expression of a dominant-negative Epac2 [116], suggesting an important role
of Epac2 in the sensitizing effect of cAMP on calcium-induced Ca2+ release. The
importance of non-PKA-dependent effects of GLP-1 in elevating [Ca2+]i was also
reported previously [117].

The mechanism whereby cAMP promotes calcium-induced Ca2+ release may be
through activation of the ryanodine channel in the ER [93, 112, 113] and/or through
phosphorylation of the IP3 receptor [118]. The interaction of cAMP, via PKA, with
IP3 receptors is supported by the finding that 2-aminoethoxydiphenyl borate, a cell-
permeable IP3-receptor antagonist, blocked the PKA-mediated cAMP amplification
of calcium-induced Ca2+ release [119].

Generation of Ca2+-Mobilizing Second Messengers

GLP-1 was shown to increase intracellular production of nicotinic acid adenine
dinucleotide phosphate (NAADP) and cyclic ADP-ribose (ADPR) through cAMP
mechanisms mediated by both PKA and Epac [120]. The production of the second
messengers, cyclic ADPR and NAADP, is catalyzed by ADPR cyclases. Both mobi-
lize Ca2+ from intracellular stores and NAADP stimulates insulin secretion. The
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relative role of cyclic ADPR and NAADP in producing cAMP-mediated increases
in [Ca2+]i remain to be determined.

13.3.1.4 Direct Effect on Exocytosis

Ammala et al. [107] and Gillis and Misler [121] were the first to demonstrate that
cAMP produced direct effects on exocytosis. This effect was suggested to repre-
sent the most important effect of cAMP on insulin release [107]. Both GIP and
GLP-1 promote PKA-dependent and PKA-independent exocytosis, independently
of changes in calcium entry [87, 99, 122]. Moreover, photo release of caged cAMP
produces a marked increase in granule exocytosis that is independent of changes
in [Ca2+]i [87, 99, 123, 124]. GLP-1 and cAMP augmented depolarization-induced
exocytosis, and the effects of cAMP were mediated through both PKA-dependent
and PKA-independent, Epac-mediated effects [95]. cAMP also enhanced exocyto-
sis in single INS-1 cells, the effect being augmented by inhibition of PDE3 [65].
In permeabilized rat islets cAMP enhanced calcium-induced insulin secretion, inde-
pendently of changes in [Ca2+]i; this effect was largely dependent on Epac as it
was mimicked by an Epac-selective, but not by a PKA selective, cAMP analogue
and was unaffected by a PKA inhibitor [125]. Use of two-photon extracellular polar
tracer (TEP) imaging and electron microscopy showed different roles of PKA or
Epac in the enhancement by cAMP of calcium-evoked exocytosis of small compared
with large, secretory vesicles [124]. Effects of cAMP on large vesicle exocytosis
appeared to be PKA dependent, whereas effects on small vesicles were mediated
via Epac.

There are different pools of insulin secretory granules in the β-cell. The first
phase of glucose-induced insulin secretion is due to the release of granules docked at
the membrane in a readily releasable pool and the second phase is dependent on the
mobilization of granules to refill this readily releasable pool. The effects of cAMP,
which augments both first and second phases of insulin secretion, are at least partly
attributable to an expansion and refilling of the readily releasable pool [126–128].
Knockout of Epac2 specifically blocks the first phase of glucose-induced granule–
plasma membrane fusions, suggesting the importance of cAMP signalling through
Epac2 in this phase [89]. This supports earlier findings that the augmentation by
cAMP of short depolarizations was Epac dependent, whereas the effect on longer
depolarizations was largely PKA dependent and was more sensitive to cAMP [95].
The second phase of exocytosis appears to be mediated via both PKA and Epac
[95, 127, 128], although a PKA dependency of the first phase of glucose-induced
exocytosis has also been reported [123].

13.3.1.5 Activation of Protein Kinase C

Protein kinase C (PKC) is another second messenger contributing to the regula-
tion of insulin secretion, and one study suggests that PKC may mediate some of
the insulin secretory effects of agents that elevate cAMP. Thus, GLP-1 was shown
to activate the translocation of PKCα and PKCε in INS-1 cells and its effects are
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mimicked by forskolin. This activation was Ca2+ dependent, and it was hypothe-
sized that it was effected through mobilization of Ca2+ as a result, for example, of
PKA sensitization of the IP3 channel and consequent Ca2+-mediated activation of
phospholipase C [129].

13.4 Role of cAMP in Insulin Synthesis and in β-Cell
Differentiation, Proliferation, and Survival

The incretin GLP-1, acting to an important extent through cAMP effector mecha-
nisms, increases insulin synthesis, promotes β-cell proliferation and inhibits β-cell
apoptosis [25], although there is evidence for cAMP-independent effects [130].
Indeed much of the evidence for the importance of cAMP in these processes is
derived from studies using GLP-1 and exendin-4. The finding that mice with a β-
cell-specific deficiency in the α subunit of Gs showed reduced β-cell mass, reduced
islet content of insulin, reduced β-cell proliferation, and increased β-cell apoptosis,
and marked hyperglycaemia suggests the fundamental importance of responsiveness
to incretin hormones [131] in β-cell homeostasis.

Glucose-mediated increases in insulin synthesis involve the phosphorylation of
the transcription factor pancreatic duodenal homeobox-1 (PDX-1) and its transloca-
tion to the nucleus [132]. There is strong evidence for the importance of cAMP,
acting through PKA-dependent mechanisms, in mediating the ability of GLP-1
to increase β-cell levels of PDX-1, stimulate its translocation to the nucleus and
consequently activate the insulin gene promoter [133]. PDX-1 expression is itself
required for the generation of cAMP in response to exendin-4 through controlling
the expression of the GLP-1 receptor and the Gs protein a subunit [134].

CREB (cAMP response element binding protein) is the key transcriptional acti-
vator that mediates the effects of cAMP on gene regulation and its effects in
regulating islet β-cell proliferation and survival. cAMP, through a PKA-dependent
mechanism, and glucose act synergistically to regulate CREB activation in MIN6
or INS-1 cells [135, 136]. This appears to involve cAMP/PKA and glucose-induced
modulation of the phosphorylation status of TORC2, a key co-activator of CREB,
and the stimulation of its translocation to the nucleus [135, 136].

13.4.1 Immediate Early Response Genes

Cyclic AMP appears to mediate the effects of glucose in stimulating the β-cell
expression of immediate early response genes such as c-myc [137] and c-fos [138],
which probably play an important role in the effects of glucose in regulating the
gene expression of metabolic enzymes, cell growth, and apoptosis. In Min6 insulin-
secreting cells Glauser et al. [139] identified 592 targets and 1278 immediate early
genes responding to co-stimulation with glucose and cAMP (chlorophenylthio-
cAMP, a cell-permeant cAMP analogue) and suggested an important role for
the transcription factor AP-1. Indeed, the AP-1-regulated gene sulfiredoxin was
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identified among the targets that were sequentially induced in primary cells from
rat islets. In the same context, cAMP also amplifies the effect of glucose in
stimulating the MAPK/ERK pathway [6, 140–142]. The augmentation of glucose-
induced activation of ERK in response to GLP-1 required both influx of Ca2+

through voltage-dependent calcium channels and was PKA dependent [143] and
GIP activates this kinase pathway through cyclic AMP and PKA [144].

13.4.2 Protection Against β-Cell Apoptosis and Stimulation
of β-Cell Proliferation

There is abundant evidence for suppression of β-cell apoptosis by agents that elevate
cAMP, including GLP-1, GIP, exendin-4, ghrelin and obestatin [135, 145–151]. This
appears to be PKA mediated [148, 149]. Paradoxically, some β-cell lines were made
more susceptible to apoptosis following exposure to dibutyryl cyclic AMP [152] or
the cyclic AMP-elevating agent forskolin [153]. The anti-apoptotic effects of cAMP
are mediated, in part, by increased expression of the anti-apoptotic proteins Bcl-2
and Bcl-xL [135, 146], and are PKA dependent [135, 146, 151]. The anti-apoptotic
effects also involve caspase inhibition [147]. Inhibition of cytokine-mediated nitric
oxide production by β-cells [154] may also be implicated.

In addition to preventing apoptosis of β-cells, the incretin hormones and other
agents elevating cAMP promote β-cell proliferation through PKA-dependent mech-
anisms [134, 155, 156]. This effect appears to involve expression of cyclin D1 [155,
157] and cyclin A2 [134]. In this context, there may be an interaction of cAMP with
Wnt signalling, which plays an important role in β-cell proliferation and survival
with upregulation of cyclins D1 and D2 [158]. Thus, GLP-1 and exendin-4 acti-
vated Wnt signalling in INS-1 cells and in isolated islets [159]. Exendin-induced
β-cell proliferation was inhibited by blocking β-catenin or the transcription factor
TCF7L2, critical mediators of Wnt signalling [159].

An additional mechanism whereby cAMP modulates β-cell proliferation may
be through regulation of the CREB antagonists cAMP response element modulator
CREM-α and ICERI and the dual specificity phosphatase DUSP14, a negative reg-
ulator of the MAPK/ERK1/2 pathway. Thus, genes for these proteins were rapidly
and strongly upregulated by GLP-1 in a β-cell line and in rat primary β-cells, an
effect that was mimicked by forskolin and blocked by the PKA inhibitor H89 but
not by an Epac inhibitor. shRNA-mediated knockdown of CREM-α or DUSP14,
or expression of a dominant-negative DUSP14, augmented GLP-1-induced β-cell
proliferation [156].

13.5 Possible Roles of cAMP in Other Islet Cell Types

Relatively little is known about the role of cAMP in other islet cells, although there
is some information on its role in the glucagon-secreting and somatostatin-secreting
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cells. Forskolin was shown to stimulate glucagon secretion from rat islets [160].
GLP-1 (and GIP) augmented depolarization-evoked exocytosis from rat α-cells;
this effect was accompanied by elevations in intracellular cAMP, increases in Ca2+

currents and was mediated by PKA [161]. Exposure of an α-cell line (INRl-
G9) expressing recombinant GLP-1 receptors to GLP-1 increased the formation
of cAMP and elevated free cytosolic [Ca2+] [162]. In the same cell line, an
Epac-selective cAMP analogue stimulated the expression of the glucagon gene pro-
moter and stimulated glucagon production, although not glucagon secretion [163].
Moreover, a dominant-negative Epac-2 attenuated forskolin-stimulated expression
of the glucagon gene promoter in the InR1-G9 cells [163]. While these data indi-
cate a stimulatory effect of GLP-1 on glucagon synthesis and secretion, GLP-1 is
known to inhibit glucagon secretion, an action likely to contribute to its therapeutic
effect in the treatment of diabetes [164]. The inhibition of glucagon secretion by
GLP-1 is thus likely to be mediated by a paracrine action in the islets, for example,
through stimulation of somatostatin secretion, which markedly inhibits glucagon
release [165]. In this context, GLP-1, oxyntomodulin and glucagon were shown
to potently stimulate somatostatin secretion from somatostatin-secreting cell lines
(RIN T3; RIN 1048-38) and to stimulate the accumulation of cAMP [166, 167].
Increases in cAMP levels in response to forskolin, theophylline or dibutyryl cAMP
were shown to be associated with increased somatostatin release from isolated islets
[168].

Glucagon itself stimulates glucagon release by activating glucagon, rather than
GLP-1, receptors, through cAMP-dependent mechanisms involving both PKA and
Epac [169].

Adrenaline, or isoprenaline, acting through β-adrenoceptors, augmented
depolarization-evoked glucagon secretion from rat primary α-cells [170]. This effect
was mimicked by forskolin and was PKA dependent. As in the β-cell the PKA-
dependent effects appear to involve more than one mechanism, including increased
Ca2+ entry and augmentation of the effects of Ca2+. Photo release of caged cAMP
increased exocytosis even when intracellular [Ca2+] was clamped [170]. These data
were supported by observations using mouse primary α-cells, in which adrenaline-
induced increases in α-cell [Ca2+]i were mediated, in part, by elevations in cAMP
and activation of PKA [171].

13.6 Conclusion

cAMP is clearly an important mediator/modulator of many β-cell functions from
hormone secretion to proliferation, survival and synthetic functions and is also likely
to be important in other islet cell types. Further work will elucidate the precise
mechanisms whereby PKA and Epac, the known mediators of the effects of cAMP,
exert their effects on these cellular processes. Novel ways of targeting cAMP mech-
anisms through small molecules, rather than peptides, may open up new treatments
for diabetes mellitus. Small molecules targeting the GRP119 receptor are under
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development [37]. A number of non-peptide agents that act both as direct agonists
and allosteric modulators of the GLP-1 receptor are also being examined [172].
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