36 research outputs found

    Building a patchwork — The yeast plasma membrane as model to study lateral domain formation

    Get PDF
    AbstractThe plasma membrane (PM) has to fulfill a wide range of biological functions including selective uptake of substances, signal transduction and modulation of cell polarity and cell shape. To allow efficient regulation of these processes many resident proteins and lipids of the PM are laterally segregated into different functional domains. A particularly striking example of lateral segregation has been described for the budding yeast PM, where integral membrane proteins as well as lipids exhibit very slow translational mobility and form a patchwork of many overlapping micron-sized domains. Here we discuss the molecular and physical mechanisms contributing to the formation of a multi-domain membrane and review our current understanding of yeast PM organization. Many of the fundamental principles underlying membrane self-assembly and organization identified in yeast are expected to equally hold true in other organisms, even for the more transient and elusive organization of the PM in mammalian cells. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling

    Zelluläre Rolle und molekulare Grundlagen des Endosomentransports in Ustilago maydis

    Get PDF
    Die vorliegende Arbeit beschäftigt sich mit den molekularen Grundlagen polaren Wachstums im phytopathogenen Basidiomycet Ustilago maydis. Zunächst wurde die zelluläre Rolle des t-SNAREs Yup1 analysiert. Ein temperatursensitiver Defekt im yup1-Gen hatte zu Störungen in der Zelltrennung und im polaren Wachstum von Sporidien geführt. Mutante Zellen bildeten dabei lange verzweigte Ketten aus verdickten Zellen. Die Lokalisation eines Yup1-GFPFusionsproteins auf beweglichen Organellen hatte zum Aufstellen eines spekulativen Modells geführt, bei dem Yup1 auf Endosomen die Fusion mit ankommenden endozytotischen Vesikeln vermittelt. Eine erstmalige Charakterisierung der Endozytose von U. maydis in dieser Arbeit zeigte, dass es sich bei den mit Yup1-GFP markierten, schnellen Organellen tatsächlich um frühe Endosomen handelte. Diese akkumulierten Zellzyklus-abhängig an Regionen aktiven Wachstums in BSDs. Die Akkumulation früher Endosomen im Apex von Hyphen war für das Spitzenwachstum erforderlich. In yup1ts-Zellen war bei restriktiver Temperatur eine gestörte Endozytose zu beobachten. Dieser Zusammenhang zwischen Zellmorphologie und polarer Sekretion einerseits und Endozytose andererseits deutete darauf hin, dass Membranrecycling über frühe Endosomen entscheidend am polaren Wachstum von U. maydis-Zellen im Speziellen und pilzlichen Hyphen im Allgemeinen mitwirkt. Mittels des Yup1-GFP-Fusionsproteins konnten die molekularen Grundlagen der beobachteten Bewegung von Endosomen untersucht werden. Es wurde gezeigt, dass sich frühe Endosomen entlang von MT bewegen. Für diese Bewegung war in erster Linie das Kinesin Kin3 verantwortlich. Dieses Molekül ist ein neues Mitglied der Unc104/KIF1-Familie von Kinesin-ähnlichen molekularen Motoren und bewegt als solches vermutlich in Richtung der plus-Enden von MT. Gelfiltrationsexperimente legten nahe, dass Kin3 in der Zelle als Monomer vorliegt. Die N-terminale Motordomäne zeigte in vitro eine MTstimulierte ATPase Aktivität. Ein Kin3-GFP-Fusionsprotein lokalisierte in schnell beweglichen Flecken, die im Bewegungsverhalten den frühen Endosomen glichen. Ein Kin3-YFP-Fusionsprotein bewegte entlang von MT und kolokalisierte zudem mit einem Yup1-CFP-Fusionsprotein auf Endosomen. Die Deletion von kin3 führte zu einer starken Reduzierung der Endosomenbewegung. Die in vivo-Untersuchung der MT-Dynamik im Δkin3-Stamm ergab, dass der Großteil der Endosomen in Akkumulationen an den minus-Enden der MT konzentriert war. Entsprechend führte die Überexpression von kin3 zu einer verstärkten Konzentration der Endosomen an den plus-Enden von MT. Die Zellform einzelner Sporidien war im kin3-Deletionsstamm nicht verändert. Allerdings trennten sich die Zellen nach der Teilung wie in der yup1ts-Mutante nicht voneinander. Dieser Trennungsdefekt und ein verändertes Knospungsmuster führten zur Bildung von großen Baum-ähnlichen Zellaggregaten. Im Hyphenstadium führte die Deletion von kin3 außerdem zu einer deutlichen Störung des polaren Wachstums. Die nach Deletion von kin3 beobachtete Restbewegung der Endosomen beruhte fast ausschließlich auf der Aktivität des zytoplasmatischen Dyneins von U. maydis. Das konventionelle Kinesin von U. maydis, Kin2, zeigte ebenfalls einen Einfluss auf die Organisation und Position endosomaler Akkumulationen, obwohl es vermutlich nicht direkt am Transport einzelner Endosomen beteiligt ist. Die präsentierten Daten zeigen, dass Endosomen MT- und Zellzyklus-abhängig organisiert sind. Die Position der BSDs korrelierte dabei mit Funktionen der Endosomen bei der Zelltrennung, in der Bestimmung des Knospungsmusters und beim polaren Wachstum. Da die MT während des Knospenwachstums unipolar ausgerichtet sind, nutzt die U. maydis-Zelle das Wechselspiel des plus-Motors Kin3 und des minus-Motors Dynein, um die Endosomen Zellzyklus-abhängig an den plus- oder minus-Enden der MT zu akkumulieren

    Visualization of Endothelial Actin Cytoskeleton in the Mouse Retina

    Get PDF
    Angiogenesis requires coordinated changes in cell shape of endothelial cells (ECs), orchestrated by the actin cytoskeleton. The mechanisms that regulate this rearrangement in vivo are poorly understood - largely because of the difficulty to visualize filamentous actin (F-actin) structures with sufficient resolution. Here, we use transgenic mice expressing Lifeact-EGFP to visualize F-actin in ECs. We show that in the retina, Lifeact-EGFP expression is largely restricted to ECs allowing detailed visualization of F-actin in ECs in situ. Lifeact-EGFP labels actin associated with cell-cell junctions, apical and basal membranes and highlights actin-based structures such as filopodia and stress fiber-like cytoplasmic bundles. We also show that in the skin and the skeletal muscle, Lifeact-EGFP is highly expressed in vascular mural cells (vMCs), enabling vMC imaging. In summary, our results indicate that the Lifeact-EGFP transgenic mouse in combination with the postnatal retinal angiogenic model constitutes an excellent system for vascular cell biology research. Our approach is ideally suited to address structural and mechanistic details of angiogenic processes, such as endothelial tip cell migration and fusion, EC polarization or lumen formation

    Multiple roles of filopodial dynamics in particle capture and phagocytosis and phenotypes of Cdc42 and Myo10 deletion

    Get PDF
    Macrophage filopodia, finger-like membrane protrusions, were first implicated in phagocytosis more than 100 years ago, but little is still known about the involvement of these actin-dependent structures in particle clearance. Using spinning disk confocal microscopy to image filopodial dynamics in mouse resident Lifeact-EGFP macrophages, we show that filopodia, or filopodia-like structures, support pathogen clearance by multiple means. Filopodia supported the phagocytic uptake of bacterial (Escherichia coli) particles by (i) capturing along the filopodial shaft and surfing toward the cell body, the most common mode of capture; (ii) capturing via the tip followed by retraction; (iii) combinations of surfing and retraction; or (iv) sweeping actions. In addition, filopodia supported the uptake of zymosan (Saccharomyces cerevisiae) particles by (i) providing fixation, (ii) capturing at the tip and filopodia-guided actin anterograde flow with phagocytic cup formation, and (iii) the rapid growth of new protrusions. To explore the role of filopodia-inducing Cdc42, we generated myeloid-restricted Cdc42 knock-out mice. Cdc42-deficient macrophages exhibited rapid phagocytic cup kinetics, but reduced particle clearance, which could be explained by the marked rounded-up morphology of these cells. Macrophages lacking Myo10, thought to act downstream of Cdc42, had normal morphology, motility, and phagocytic cup formation, but displayed markedly reduced filopodia formation. In conclusion, live-cell imaging revealed multiple mechanisms involving macrophage filopodia in particle capture and engulfment. Cdc42 is not critical for filopodia or phagocytic cup formation, but plays a key role in driving macrophage lamellipodial spreading

    TWISTED DWARF1 mediates the action of auxin transport inhibitors on actin cytoskeleton dynamics

    Get PDF
    Plant growth and architecture is regulated by the polar distribution of the hormone auxin. Polarity and flexibility of this process is provided by constant cycling of auxin transporter vesicles along actin filaments, coordinated by a positive auxin-actin feedback loop. Both polar auxin transport and vesicle cycling are inhibited by synthetic auxin transport inhibitors, such as 1-N-naphthylphthalamic acid (NPA), counteracting the effect of auxin; however, underlying targets and mechanisms are unclear. Using NMR, we map the NPA binding surface on the Arabidopsis thaliana ABCB chaperone TWISTED DWARF1 (TWD1). We identify ACTIN7 as a relevant, although likely indirect, TWD1 interactor, and show TWD1-dependent regulation of actin filament organization and dynamics and that TWD1 is required for NPA-mediated actin cytoskeleton remodeling. The TWD1-ACTIN7 axis controls plasma membrane presence of efflux transporters, and as a consequence act7 and twd1 share developmental and physiological phenotypes indicative of defects in auxin transport. These can be phenocopied by NPA treatment or by chemical actin (de)stabilization. We provide evidence that TWD1 determines downstream locations of auxin efflux transporters by adjusting actin filament debundling and dynamizing processes and mediating NPA action on the latter. This function appears to be evolutionary conserved since TWD1 expression in budding yeast alters actin polarization and cell polarity and provides NPA sensitivity

    Self-organization: the fundament of cell biology

    No full text

    A putative endosomal t-SNARE links exo- and endocytosis in the phytopathogenic fungus Ustilago maydis

    No full text
    We identified a temperature-sensitive mutant of the plant pathogenic fungus Ustilago maydis that is defective in the polar distribution of cell wall components and shows abnormal morphology. The affected gene, yup1, was cloned by complementation. It encodes a putative target soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (t-SNARE), suggesting a function in membrane fusion. A Yup1–GFP fusion protein localized to vesicles that showed rapid saltatory motion along microtubules. These vesicles are part of the endocytic pathway and accumulate at sites of active growth, thereby supporting the expansion of the hyphal tip. In yup1(ts) cells, endocytosis is impaired and accumulation of Yup1-carrying endosomes at cell poles is abolished, resulting in apolar distribution of wall components and morphological alterations. This suggests that a membrane recycling process via early endosomes supports polar growth of U.maydis

    A balance of KIF1A-like kinesin and dynein organizes early endosomes in the fungus Ustilago maydis

    No full text
    In Ustilago maydis, bidirectional transport of early endosomes is microtubule dependent and supports growth and cell separation. During early budding, endosomes accumulate at putative microtubule organizers within the bud, whereas in medium-budded cells, endosome clusters appear at the growing ends of microtubules at the distal cell pole. This suggests that motors of opposing transport direction organize endosomes in budding cells. Here we set out to identify these motors and elucidate the molecular mechanism of endosome reorganization. By PCR we isolated kin3, which encodes an UNC-104/KIF1-like kinesin from U.maydis. Recombinant Kin3 binds microtubules and has ATPase activity. Kin3–green fluorescent protein moves along microtubules in vivo, accumulates at sites of growth and localizes to endosomes. Deletion of kin3 reduces endosome motility to ∼33%, and abolishes endosome clustering at the distal cell pole and at septa. This results in a transition from bipolar to monopolar budding and cell separation defects. Double mutant analysis indicates that the remaining motility in Δkin3-mutants depends on dynein, and that dynein and Kin3 counteract on the endosomes to arrange them at opposing cell poles

    GDI-Mediated Cell Polarization in Yeast Provides Precise Spatial and Temporal Control of Cdc42 Signaling

    Get PDF
    <div><p>Cell polarization is a prerequisite for essential processes such as cell migration, proliferation or differentiation. The yeast <i>Saccharomyces cerevisiae</i> under control of the GTPase Cdc42 is able to polarize without the help of cytoskeletal structures and spatial cues through a pathway depending on its guanine nucleotide dissociation inhibitor (GDI) Rdi1. To develop a fundamental understanding of yeast polarization we establish a detailed mechanistic model of GDI-mediated polarization. We show that GDI-mediated polarization provides precise spatial and temporal control of Cdc42 signaling and give experimental evidence for our findings. Cell cycle induced changes of Cdc42 regulation enhance positive feedback loops of active Cdc42 production, and thereby allow simultaneous switch-like regulation of focused polarity and Cdc42 activation. This regulation drives the direct formation of a unique polarity cluster with characteristic narrowing dynamics, as opposed to the previously proposed competition between transient clusters. As the key components of the studied system are conserved among eukaryotes, we expect our findings also to apply to cell polarization in other organisms.</p></div
    corecore