72 research outputs found

    A survey in natural forest ecosystems of Vietnam reveals high diversity of both new and described Phytophthora taxa including P. ramorum

    Get PDF
    In 2016 and 2017, surveys of Phytophthora diversity were performed in 25 natural and semi-natural forest stands and 16 rivers in temperate and subtropical montane and tropical lowland regions of Vietnam. Using baiting assays from soil samples and rivers and direct isolations from naturally fallen leaves, 13 described species, five informally designated taxa and 21 previously unknown taxa of Phytophthora were isolated from 58 of the 91 soil samples (63.7%) taken from the rhizosphere of 52 of the 64 woody plant species sampled (81.3%) in 20 forest stands (83.7%), and from all rivers: P. capensis, P. citricola VII, VIII, IX, X and XI, P. sp. botryosa-like 2, P. sp. meadii-like 1 and 2, P. sp. tropicalis-like 2 and P. sp. multivesiculata-like 1 from Phytophthora major phylogenetic Clade 2; P. castaneae and P. heveae from Clade 5; P. chlamydospora, P. gregata, P. sp. bitahaiensis-like and P. sp. sylvatica-like 1, 2 and 3 from Clade 6; P. cinnamomi (Pc), P. parvispora, P. attenuata, P. sp. attenuata-like 1, 2 and 3 and P. ×heterohybrida from Clade 7; P. drechsleri, P. pseudocryptogea, P. ramorum (Pr) and P. sp. kelmania from Clade 8, P. macrochlamydospora, P. sp. ×insolita-like, P. sp. ×kunnunara-like, P. sp. ×virginiana-like s.l. and three new taxa, P. sp. quininea-like, P. sp. ×Grenada 3-like and P. sp. ×Peru 4-like, from Clade 9; and P. sp. gallica-like 1 and 2 from Clade 10. The A1 and A2 mating types of both Pc and Pr co-occurred. The A2 mating type of Pc was associated with severe dieback of montane forests in northern Vietnam. Most other Phytophthora species, including Pr, were not associated with obvious disease symptoms. It is concluded that (1) Vietnam is within the center of origin of most Phytophthora taxa found including Pc and Pr, and (2) Phytophthora clades 2, 5, 6, 7, 8, 9, and 10 are native to Indochina.info:eu-repo/semantics/publishedVersio

    Complexities underlying the breeding and deployment of Dutch elm disease resistant elms

    Get PDF
    Dutch elm disease (DED) is a vascular wilt disease caused by the pathogens Ophiostoma ulmi and Ophiostoma novo-ulmi with multiple ecological phases including pathogenic (xylem), saprotrophic (bark) and vector (beetle flight and beetle feeding wound) phases. Due to the two DED pandemics during the twentieth century the use of elms in landscape and forest restoration has declined significantly. However new initiatives for elm breeding and restoration are now underway in Europe and North America. Here we discuss complexities in the DED 'system' that can lead to unintended consequences during elm breeding and some of the wider options for obtaining durability or 'field resistance' in released material, including (1) the phenotypic plasticity of disease levels in resistant cultivars infected by O. novo-ulmi; (2) shortcomings in test methods when selecting for resistance; (3) the implications of rapid evolutionary changes in current O. novo-ulmi populations for the choice of pathogen inoculum when screening; (4) the possibility of using active resistance to the pathogen in the beetle feeding wound, and low attractiveness of elm cultivars to feeding beetles, in addition to resistance in the xylem; (5) the risk that genes from susceptible and exotic elms be introgressed into resistant cultivars; (6) risks posed by unintentional changes in the host microbiome; and (7) the biosecurity risks posed by resistant elm deployment. In addition, attention needs to be paid to the disease pressures within which resistant elms will be released. In the future, biotechnology may further enhance our understanding of the various resistance processes in elms and our potential to deploy trees with highly durable resistance in elm restoration. Hopefully the different elm resistance processes will prove to be largely under durable, additive, multigenic control. Elm breeding programmes cannot afford to get into the host-pathogen arms races that characterise some agricultural host-pathogen systems

    Host-induced aneuploidy and phenotypic diversification in the Sudden Oak Death pathogen Phytophthora ramorum

    Get PDF
    BackgroundAneuploidy can result in significant phenotypic changes, which can sometimes be selectively advantageous. For example, aneuploidy confers resistance to antifungal drugs in human pathogenic fungi. Aneuploidy has also been observed in invasive fungal and oomycete plant pathogens in the field. Environments conducive to the generation of aneuploids, the underlying genetic mechanisms, and the contribution of aneuploidy to invasiveness are underexplored. We studied phenotypic diversification and associated genome changes in Phytophthora ramorum, a highly destructive oomycete pathogen with a wide host-range that causes Sudden Oak Death in western North America and Sudden Larch Death in the UK. Introduced populations of the pathogen are exclusively clonal. In California, oak (Quercus spp.) isolates obtained from trunk cankers frequently exhibit host-dependent, atypical phenotypes called non-wild type (nwt), apparently without any host-associated population differentiation. Based on a large survey of genotypes from different hosts, we previously hypothesized that the environment in oak cankers may be responsible for the observed phenotypic diversification in P. ramorum.ResultsWe show that both normal wild type (wt) and nwt phenotypes were obtained when wt P. ramorum isolates from the foliar host California bay (Umbellularia californica) were re-isolated from cankers of artificially-inoculated canyon live oak (Q. chrysolepis). We also found comparable nwt phenotypes in P. ramorum isolates from a bark canker of Lawson cypress (Chamaecyparis lawsoniana) in the UK; previously nwt was not known to occur in this pathogen population. High-throughput sequencing-based analyses identified major genomic alterations including partial aneuploidy and copy-neutral loss of heterozygosity predominantly in nwt isolates. Chromosomal breakpoints were located at or near transposons.ConclusionThis work demonstrates that major genome alterations of a pathogen can be induced by its host species. This is an undocumented type of plant-microbe interaction, and its contribution to pathogen evolution is yet to be investigated, but one of the potential collateral effects of nwt phenotypes may be host survival

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Induced antimicrobial activity in heat-treated woodchips inhibits the activity of the invasive plant pathogen Phytophthora ramorum

    Get PDF
    We investigated the antimicrobial activity of heat‐treated woodchips of three woody host species against the invasive oomycete plant pathogen Phytophthora ramorum to assess the potential of heated woodchips for disease suppression. Results demonstrated that heat‐treated pine (Pinus sylvestris), Japanese larch (Larix kaempferi) and rhododendron (Rhododendron ponticum) woodchips inhibited the recovery of P. ramorum spores and mycelium compared with similar material that had only been air‐dried. Effects were most evident with pine and larch; inhibition was maintained even when larch woodchips were diluted with soil. In vitro assays using methanol crude extracts from woodchips of the three species showed they all had an inhibitory effect on P. ramorum zoospores and reduced chlamydospore germination compared with air‐dried wood extracts. Chemical analysis of the extracts revealed several induced compounds were present but in different concentrations for each species. Coniferaldehyde was the most active inhibitory against spores and mycelium, whilst the dominant resin acids, dehydroabietic and abietic acid, decreased the minimum inhibitory concentration of phenolic compounds tested against P. ramorum but were ineffective when used alone. An array of compounds, including dehydroabietic acid, methyl abietate, α‐pinene and 3‐carene, occurred at elevated levels in the living tissue of Japanese larch bark attacked by P. ramorum. These compounds may be part of the induced resistance response of larch to P. ramorum. Results of a field trial using heat‐treated and air‐dried woodchips were consistent with the crude extract bioassay results, suggesting that heat‐treated woody materials have potential to reduce the survival of P. ramorum under natural conditions
    corecore