27 research outputs found

    Complexities underlying the breeding and deployment of Dutch elm disease resistant elms

    Get PDF
    Dutch elm disease (DED) is a vascular wilt disease caused by the pathogens Ophiostoma ulmi and Ophiostoma novo-ulmi with multiple ecological phases including pathogenic (xylem), saprotrophic (bark) and vector (beetle flight and beetle feeding wound) phases. Due to the two DED pandemics during the twentieth century the use of elms in landscape and forest restoration has declined significantly. However new initiatives for elm breeding and restoration are now underway in Europe and North America. Here we discuss complexities in the DED 'system' that can lead to unintended consequences during elm breeding and some of the wider options for obtaining durability or 'field resistance' in released material, including (1) the phenotypic plasticity of disease levels in resistant cultivars infected by O. novo-ulmi; (2) shortcomings in test methods when selecting for resistance; (3) the implications of rapid evolutionary changes in current O. novo-ulmi populations for the choice of pathogen inoculum when screening; (4) the possibility of using active resistance to the pathogen in the beetle feeding wound, and low attractiveness of elm cultivars to feeding beetles, in addition to resistance in the xylem; (5) the risk that genes from susceptible and exotic elms be introgressed into resistant cultivars; (6) risks posed by unintentional changes in the host microbiome; and (7) the biosecurity risks posed by resistant elm deployment. In addition, attention needs to be paid to the disease pressures within which resistant elms will be released. In the future, biotechnology may further enhance our understanding of the various resistance processes in elms and our potential to deploy trees with highly durable resistance in elm restoration. Hopefully the different elm resistance processes will prove to be largely under durable, additive, multigenic control. Elm breeding programmes cannot afford to get into the host-pathogen arms races that characterise some agricultural host-pathogen systems

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Induced antimicrobial activity in heat-treated woodchips inhibits the activity of the invasive plant pathogen Phytophthora ramorum

    Get PDF
    We investigated the antimicrobial activity of heat‐treated woodchips of three woody host species against the invasive oomycete plant pathogen Phytophthora ramorum to assess the potential of heated woodchips for disease suppression. Results demonstrated that heat‐treated pine (Pinus sylvestris), Japanese larch (Larix kaempferi) and rhododendron (Rhododendron ponticum) woodchips inhibited the recovery of P. ramorum spores and mycelium compared with similar material that had only been air‐dried. Effects were most evident with pine and larch; inhibition was maintained even when larch woodchips were diluted with soil. In vitro assays using methanol crude extracts from woodchips of the three species showed they all had an inhibitory effect on P. ramorum zoospores and reduced chlamydospore germination compared with air‐dried wood extracts. Chemical analysis of the extracts revealed several induced compounds were present but in different concentrations for each species. Coniferaldehyde was the most active inhibitory against spores and mycelium, whilst the dominant resin acids, dehydroabietic and abietic acid, decreased the minimum inhibitory concentration of phenolic compounds tested against P. ramorum but were ineffective when used alone. An array of compounds, including dehydroabietic acid, methyl abietate, α‐pinene and 3‐carene, occurred at elevated levels in the living tissue of Japanese larch bark attacked by P. ramorum. These compounds may be part of the induced resistance response of larch to P. ramorum. Results of a field trial using heat‐treated and air‐dried woodchips were consistent with the crude extract bioassay results, suggesting that heat‐treated woody materials have potential to reduce the survival of P. ramorum under natural conditions

    Data from: A versatile method for assessing pathogenicity of Hymenoscyphus fraxineus to ash foliage

    No full text
    We describe a method for inoculating rachises of Fraxinus excelsior (European or common ash) with Hymenoscyphus fraxineus, which is faster than previous methods and allows associated foliar symptoms to be assessed on replicate leaves. A total of ten ash seedlings were inoculated with five isolates of H. fraxineus and lesion development assessed over four weeks. A five‐point disease progress scale of symptom development was developed from no lesion (0), lesion on rachis (1), “pre‐top dead,” with curling of distal leaflets and bending of the rachis (2), top dead, with wilting and death of distal leaflets (3) to leaf abscission (4). The method revealed variation in aggressiveness of H. fraxinus isolates and may be suitable for assessing the resistance of F. excelsior and other Fraxinus species to dieback. The in vitro growth rate of H. fraxineus isolates was highly correlated with both disease progress and the length of rachis lesions on susceptible plants, indicating that it can be used as a preliminary step in selecting isolates with high aggressiveness for use in resistance screening

    Four phenotypically and phylogenetically distinct lineages in Phytophthora lateralis

    No full text
    Until recently Phytophthora lateralis was known only as the cause of dieback and mortality of Chamaecyparis lawsoniana in its native range in the Pacific Northwest (PNW). Since the 1990s however disease outbreaks have occurred increasingly on ornamental C. lawsoniana in Europe; and in 2007 the pathogen was discovered in soil around old growth Chamaecyparis obtusa in Taiwan, where it may be endemic. When the phenotypes of over 150 isolates of P. lateralis from Taiwan, across the PNW (British Columbia to California) and from France, the Netherlands and the UK were compared three growth rate groups were resolved: one slow growing from Taiwan, one fast growing from the PNW and Europe, and one of intermediate growth from a small area of the UK. Within these growth groups distinct subtypes were identified based on colony patterns and spore metrics and further discriminated in a multivariate analysis. The assumption that the three main growth groups represented phylogenetic units was tested by comparative sequencing of two mitochondrial and three nuclear genes. This assumption was confirmed. In addition two phenotype clusters within the Taiwan growth group were also shown to be phylogenetically distinct. These four phenotypically and genotypically unique populations are informally designated as the PNW lineage, the UK lineage, the Taiwan J lineage, and the Taiwan K lineage. Their characteristics and distribution are described and their evolution, taxonomic, and plant health significance is discussed

    Contrasting microsatellite diversity in the evolutionary lineages of Phytophthora lateralis

    No full text
    Following recent discovery of Phytophthora lateralis on native Chamaecyparis obtusa in Taiwan, four phenotypically distinct lineages were discriminated: the Taiwan J (TWJ) and Taiwan K (TWK) in Taiwan, the Pacific Northwest (PNW) in North America and Europe and the UK in west Scotland. Across the four lineages, we analysed 88 isolates from multiple sites for microsatellite diversity. Twenty-one multilocus genotypes (MLGs) were resolved with high levels of diversity of the TWK and PNW lineages. No alleles were shared between the PNW and the Taiwanese lineages. TWK was heterozygous at three loci, whereas TWJ isolates were homozygous apart from one isolate, which exhibited a unique allele also present in the TWK lineage. PNW lineage was heterozygous at three loci. The evidence suggests its origin may be a yet unknown Asian source. North American and European PNW isolates shared all their alleles and also a dominant MLG, consistent with a previous proposal that this lineage is a recent introduction into Europe from North America. The UK lineage was monomorphic and homozygous at all loci. It shared its alleles with the PNW and the TWJ and TWK lineages, hence a possible origin in a recent hybridisation event between a Taiwan lineage and PNW cannot be ruled out
    corecore