17,647 research outputs found

    Boxfishes (Teleostei: Ostraciidae) as a model system for fishes swimming with many fins: kinematics

    Get PDF
    Swimming movements in boxfishes were much more complex and varied than classical descriptions indicated. At low to moderate rectilinear swimming speeds (<5 TL s^(-1), where TL is total body length), they were entirely median- and paired-fin swimmers, apparently using their caudal fins for steering. The pectoral and median paired fins generate both the thrust needed for forward motion and the continuously varied, interacting forces required for the maintenance of rectilinearity. It was only at higher swimming speeds (above 5 TL s^(-1)), when burst-and-coast swimming was used, that they became primarily body and caudal-fin swimmers. Despite their unwieldy appearance and often asynchronous fin beats, boxfish swam in a stable manner. Swimming boxfish used three gaits. Fin-beat asymmetry and a relatively nonlinear swimming trajectory characterized the first gait (0–1 TL s^(-1)). The beginning of the second gait (1–3 TL s^(-1)) was characterized by varying fin-beat frequencies and amplitudes as well as synchrony in pectoral fin motions. The remainder of the second gait (3–5 TL s^(-1)) was characterized by constant fin-beat amplitudes, varying finbeat frequencies and increasing pectoral fin-beat asynchrony. The third gait (>5 TL s^(-1)) was characterized by the use of a caudal burst-and-coast variant. Adduction was always faster than abduction in the pectoral fins. There were no measurable refractory periods between successive phases of the fin movement cycles. Dorsal and anal fin movements were synchronized at speeds greater than 2.5 TL s^(-1), but were often out of phase with pectoral fin movements

    Decoherence and Quantum Fluctuations

    Full text link
    We show that the zero-point fluctuations of the intrinsic electromagnetic environment limit the phase coherence time in all mesoscopic systems at low temperatures. We derive this quantum noise limited dephasing time and its temperature dependence in the crossover to the thermal regime. Our results agree well with most experiments in 1D systems.Comment: 4 pages & 1 figur

    Unveiling Palomar 2: The Most Obscure Globular Cluster in the Outer Halo

    Get PDF
    We present the first color-magnitude study for Palomar 2, a distant and heavily obscured globular cluster near the Galactic anticenter. Our (V,V-I) color-magnitude diagram (CMD), obtained with the UH8K camera at the CFHT, reaches V(lim) = 24 and clearly shows the principal sequences of the cluster, though with substantial overall foreground absorption and differential reddening. The CMD morphology shows a well populated red horizontal branch with a sparser extension to the blue, similar to clusters such as NGC 1261, 1851, or 6229 with metallicities near [Fe/H] = -1.3.Fromanaverageofseveralindicators,weestimatetheforegroundreddeningatE(BV)=1.24+0.07andobtainatruedistancemodulus(mM)0=17.1+0.3. From an average of several indicators, we estimate the foreground reddening at E(B-V) = 1.24 +- 0.07 and obtain a true distance modulus (m-M)_0 = 17.1 +- 0.3, placing it about 34 kpc from the Galactic center. We use starcounts of the bright stars to measure the core radius, half-mass radius, and central concentration of the cluster. Its integrated luminosity is M_V = -7.9, making it clearly brighter and more massive than most other clusters in the outer halo.Comment: 25 pages, aastex, with 8 postscript figures; accepted for publication in AJ, September 1997. Also available by e-mail from [email protected]. Please consult Harris directly for (big) postscript files of Figures 1a,b (the images of the cluster

    Multiangle static and dynamic light scattering in the intermediate scattering angle range

    Full text link
    We describe a light scattering apparatus based on a novel optical scheme covering the scattering angle range 0.5\dg \le \theta \le 25\dg, an intermediate regime at the frontier between wide angle and small angle setups that is difficult to access by existing instruments. Our apparatus uses standard, readily available optomechanical components. Thanks to the use of a charge-coupled device detector, both static and dynamic light scattering can be performed simultaneously at several scattering angles. We demonstrate the capabilities of our apparatus by measuring the scattering profile of a variety of samples and the Brownian dynamics of a dilute colloidal suspension

    Sprayable low density ablator and application process

    Get PDF
    A sprayable, low density ablative composition is described consisting esentially of: (1) 100 parts by weight of a mixture of 25-65% by weight of phenolic microballoons, 0-20% by weight of glass microballoons, 4-10% by weight of glass fibers, 25-45% by weight of an epoxy-modified polyurethane resin, 2-4% by weight of a bentonite dispersing aid, and 1-2% by weight of an alcohol activator for the bentonite; (2) 1-10 parts by weight of an aromatic amine curing agent; and (3) 200-400 parts by weight of a solvent

    Supersolid Helium at High Pressure

    Full text link
    We have measured the pressure dependence of the supersolid fraction by a torsional oscillator technique. Superflow is found from 25.6 bar up to 136.9 bar. The supersolid fraction in the low temperature limit increases from 0.6 % at 25.6 bar near the melting boundary up to a maximum of 1.5% near 55 bar before showing a monotonic decrease with pressure extrapolating to zero near 170 bar.Comment: 4 pages, 4 figure

    Perceptual learning reconfigures the effects of visual adaptation

    Get PDF
    Our sensory experiences over a range of different timescales shape our perception of the environment. Two particularly striking short-term forms of plasticity with manifestly different time courses and perceptual consequences are those caused by visual adaptation and perceptual learning. Although conventionally treated as distinct forms of experience-dependent plasticity, their neural mechanisms and perceptual consequences have become increasingly blurred, raising the possibility that they might interact. To optimize our chances of finding a functionally meaningful interaction between learning and adaptation, we examined in humans the perceptual consequences of learning a fine discrimination task while adapting the neurons that carry most information for performing this task. Learning improved discriminative accuracy to a level that ultimately surpassed that in an unadapted state. This remarkable improvement came at a price: adapting directions that before learning had little effect elevated discrimination thresholds afterward. The improvements in discriminative accuracy grew quickly and surpassed unadapted levels within the first few training sessions, whereas the deterioration in discriminative accuracy had a different time course. This learned reconfiguration of adapted discriminative accuracy occurred without a concomitant change to the characteristic perceptual biases induced by adaptation, suggesting that the system was still in an adapted state. Our results point to a functionally meaningful push–pull interaction between learning and adaptation in which a gain in sensitivity in one adapted state is balanced by a loss of sensitivity in other adapted states

    On the physical origins of the negative index of refraction

    Full text link
    The physical origins of negative refractive index are derived from a dilute microscopic model, producing a result that is generalized to the dense condensed phase limit. In particular, scattering from a thin sheet of electric and magnetic dipoles driven above resonance is used to form a fundamental description for negative refraction. Of practical significance, loss and dispersion are implicit in the microscopic model. While naturally occurring negative index materials are unavailable, ferromagnetic and ferroelectric materials provide device design opportunities.Comment: 4 pages, 1 figur
    corecore