365 research outputs found

    Effects of regional differences and demography in modelling foot-and-mouth disease in cattle at the national scale

    Get PDF
    Foot-and-mouth disease (FMD) is a fast-spreading viral infection that can produce large and costly outbreaks in livestock populations. Transmission occurs at multiple spatial scales, as can the actions used to control outbreaks. The US cattle industry is spatially expansive, with heterogeneous distributions of animals and infrastructure. We have developed a model that incorporates the effects of scale for both disease transmission and control actions, applied here in simulating FMD outbreaks in US cattle. We simulated infection initiating in each of the 3049 counties in the contiguous US, 100 times per county. When initial infection was located in specific regions, large outbreaks were more likely to occur, driven by infrastructure and other demographic attributes such as premises clustering and number of cattle on premises. Sensitivity analyses suggest these attributes had more impact on outbreak metrics than the ranges of estimated disease parameter values. Additionally, although shipping accounted for a small percentage of overall transmission, areas receiving the most animal shipments tended to have other attributes that increase the probability of large outbreaks. The importance of including spatial and demographic heterogeneity in modelling outbreak trajectories and control actions is illustrated by specific regions consistently producing larger outbreaks than others

    Estimating and exploring the proportions of inter- and intrastate cattle shipments in the United States

    Get PDF
    Mathematical models are key tools for the development of surveillance, preparedness and response plans for the potential events of emerging and introduced foreign animal diseases. Creating these types of plans requires data; when data are incomplete, mathematical models can help fill in missing information, provided they are informed by the data that are available. In the United States, the most complete national-scale data available on cattle shipments are based on Interstate Certificates of Veterinary Inspection, which track the shipment of cattle between states; data on intrastate cattle shipments are lacking. Here we develop four new datasets on intrastate cattle shipments in the U.S., including an expert elicitation survey covering 19 states and territories and three state-level brand inspection data sets. The expert elicitation survey provides estimates on the proportion of shipments that travel interstate over multiple regions of the U.S. These survey data also identify differences in shipment patterns between regions, cattle commodity types, and sectors of the cattle industry. These survey data cover more states than any other source of intrastate data; however, one limitation of these data is the small number of participating experts in many of the states, only seven of the 19 responding states and territories had a group size of three or larger. The brand data sets include origin and destination information for both intra- and interstate shipments. These data, therefore, also provide detailed information on the proportion of interstate shipments in three Western states, including the temporal and geographic variation in shipments. Because the survey and brand data overlap in the Western U.S., they can be compared. We find that in the Western U.S. the expert estimates of the overall proportion of cattle shipments matched the brand data well. However, the experts estimated that there would be larger differences in beef and dairy shipments than the brand data show. This suggests the cattle industries in the West may be sending similar proportions of commodity specific cattle shipments over state lines. We additionally used the expert survey data to explore how differences in the proportion of interstate shipments can change predictions about cattle shipment patterns using the example of model-guided suggestions for targeted surveillance in Texas. Together these four data sets are the most extensive and geographically comprehensive information to date on intrastate cattle shipments. Additionally, our analyses on predicted shipment patterns suggest that assumptions about intrastate shipments could have consequences for targeted surveillance

    Estimating and exploring the proportions of inter- and intrastate cattle shipments in the United States

    Get PDF
    Mathematical models are key tools for the development of surveillance, preparedness and response plans for the potential events of emerging and introduced foreign animal diseases. Creating these types of plans requires data; when data are incomplete, mathematical models can help fill in missing information, provided they are informed by the data that are available. In the United States, the most complete national-scale data available on cattle shipments are based on Interstate Certificates of Veterinary Inspection, which track the shipment of cattle between states; data on intrastate cattle shipments are lacking. Here we develop four new datasets on intrastate cattle shipments in the U.S., including an expert elicitation survey covering 19 states and territories and three state-level brand inspection data sets. The expert elicitation survey provides estimates on the proportion of shipments that travel interstate over multiple regions of the U.S. These survey data also identify differences in shipment patterns between regions, cattle commodity types, and sectors of the cattle industry. These survey data cover more states than any other source of intrastate data; however, one limitation of these data is the small number of participating experts in many of the states, only seven of the 19 responding states and territories had a group size of three or larger. The brand data sets include origin and destination information for both intra- and interstate shipments. These data, therefore, also provide detailed information on the proportion of interstate shipments in three Western states, including the temporal and geographic variation in shipments. Because the survey and brand data overlap in the Western U.S., they can be compared. We find that in the Western U.S. the expert estimates of the overall proportion of cattle shipments matched the brand data well. However, the experts estimated that there would be larger differences in beef and dairy shipments than the brand data show. This suggests the cattle industries in the West may be sending similar proportions of commodity specific cattle shipments over state lines. We additionally used the expert survey data to explore how differences in the proportion of interstate shipments can change predictions about cattle shipment patterns using the example of model-guided suggestions for targeted surveillance in Texas. Together these four data sets are the most extensive and geographically comprehensive information to date on intrastate cattle shipments. Additionally, our analyses on predicted shipment patterns suggest that assumptions about intrastate shipments could have consequences for targeted surveillance

    NF-κB/mTOR/MYC Axis Drives PRMT5 Protein Induction After T Cell Activation via Transcriptional and Non-transcriptional Mechanisms

    Get PDF
    Multiple sclerosis is an autoimmune disease of the central nervous system (CNS) mediated by CD4+ T cells and modeled via experimental autoimmune encephalomyelitis (EAE). Inhibition of PRMT5, the major Type II arginine methyltransferase, suppresses pathogenic T cell responses and EAE. PRMT5 is transiently induced in proliferating memory inflammatory Th1 cells and during EAE. However, the mechanisms driving PRMT5 protein induction and repression as T cells expand and return to resting is currently unknown. Here, we used naive mouse and memory mouse and human Th1/Th2 cells as models to identify mechanisms controlling PRMT5 protein expression in initial and recall T cell activation. Initial activation of naive mouse T cells resulted in NF-κB-dependent transient Prmt5 transcription and NF-κB, mTOR and MYC-dependent PRMT5 protein induction. In murine memory Th cells, transcription and miRNA loss supported PRMT5 induction to a lesser extent than in naive T cells. In contrast, NF-κB/MYC/mTOR-dependent non-transcriptional PRMT5 induction played a major role. These results highlight the importance of the NF-κB/mTOR/MYC axis in PRMT5-driven pathogenic T cell expansion and may guide targeted therapeutic strategies for MS

    Prescribing paradigm shift? Applying the 2019 European Society of Cardiology-led guidelines on ‘diabetes, pre-diabetes, and cardiovascular disease’ to assess eligibility for sodium-glucose co-transporter-2 inhibitors or glucagon-like peptide-1 receptor agonists as first-line monotherapy (or add-on to metformin monotherapy) in type 2 diabetes in Scotland

    Get PDF
    Objective: In 2019, the European Society of Cardiology led and released new guidelines for diabetes cardiovascular risk management, reflecting recent evidence of cardiovascular disease (CVD) reduction with sodium–glucose cotransporter 2 inhibitors (SGLT-2is) and some glucagon-like peptide 1 receptor agonists (GLP-1RAs) in type 2 diabetes (T2D). A key recommendation is that all those with T2D who are (antihyperglycemic) drug naïve or on metformin monotherapy should be CVD risk stratified and an SGLT-2i or a GLP-1RA initiated in all those at high or very high risk, irrespective of glycated hemoglobin. We assessed the impact of these guidelines in Scotland were they introduced as is.Research design and methods: Using a nationwide diabetes register in Scotland, we did a cross-sectional analysis, using variables in our register for risk stratification at 1 January 2019. We were conservative in our definitions, assuming the absence of a risk factor where data were not available. The risk classifications were applied to people who were drug naïve or on metformin monotherapy and the anticipated prescribing change calculated.Results: Of the 265,774 people with T2D in Scotland, 53,194 (20.0% of those with T2D) were drug naïve, and56,906(21.4%) were on metformin monotherapy. Of these, 74.5%and72.4%, respectively, were estimated as at least high risk given the guideline risk definitions.Conclusions: Thus, 80,830 (30.4%) of all those with T2D (n 5 265,774) would start one of these drug classes according to table 7 and figure 3 of the guideline. The sizeable impact on drug budgets, enhanced clinical monitoring, and the trade-off with reduced CVD-related health care costs will need careful consideration.</p

    PRMT5-Selective Inhibitors Suppress Inflammatory T Cell Responses and Experimental Autoimmune Encephalomyelitis

    Get PDF
    In the autoimmune disease multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), expansion of pathogenic, myelin-specific Th1 cell populations drives active disease; selectively targeting this process may be the basis for a new therapeutic approach. Previous studies have hinted at a role for protein arginine methylation in immune responses, including T cell–mediated autoimmunity and EAE. However, a conclusive role for the protein arginine methyltransferase (PRMT) enzymes that catalyze these reactions has been lacking. PRMT5 is the main PRMT responsible for symmetric dimethylation of arginine residues of histones and other proteins. PRMT5 drives embryonic development and cancer, but its role in T cells, if any, has not been investigated. In this article, we show that PRMT5 is an important modulator of CD4+ T cell expansion. PRMT5 was transiently upregulated during maximal proliferation of mouse and human memory Th cells. PRMT5 expression was regulated upstream by the NF-κB pathway, and it promoted IL-2 production and proliferation. Blocking PRMT5 with novel, highly selective small molecule PRMT5 inhibitors severely blunted memory Th expansion, with preferential suppression of Th1 cells over Th2 cells. In vivo, PRMT5 blockade efficiently suppressed recall T cell responses and reduced inflammation in delayed-type hypersensitivity and clinical disease in EAE mouse models. These data implicate PRMT5 in the regulation of adaptive memory Th cell responses and suggest that PRMT5 inhibitors may be a novel therapeutic approach for T cell–mediated inflammatory disease

    The cell cycle of the planctomycete Gemmata obscuriglobus with respect to cell compartmentalization

    Get PDF
    Background: Gemmata obscuriglobus is a distinctive member of the divergent phylum Planctomycetes, all known members of which are peptidoglycan-less bacteria with a shared compartmentalized cell structure and divide by a budding process. G. obscuriglobus in addition shares the unique feature that its nucleoid DNA is surrounded by an envelope consisting of two membranes forming an analogous structure to the membrane-bounded nucleoid of eukaryotes and therefore G. obscuriglobus forms a special model for cell biology. Draft genome data for G. obscuriglobus as well as complete genome sequences available so far for other planctomycetes indicate that the key bacterial cell division protein FtsZ is not present in these planctomycetes, so the cell division process in planctomycetes is of special comparative interest. The membrane-bounded nature of the nucleoid in G. obscuriglobus also suggests that special mechanisms for the distribution of this nuclear body to the bud and for distribution of chromosomal DNA might exist during division. It was therefore of interest to examine the cell division cycle in G. obscuriglobus and the process of nucleoid distribution and nuclear body formation during division in this planctomycete bacterium via light and electron microscopy. Results: Using phase contrast and fluorescence light microscopy, and transmission electron microscopy, the cell division cycle of G. obscuriglobus was determined. During the budding process, the bud was formed and developed in size from one point of the mother cell perimeter until separation. The matured daughter cell acted as a new mother cell and started its own budding cycle while the mother cell can itself initiate budding repeatedly. Fluorescence microscopy of DAPI-stained cells of G. obscuriglobus suggested that translocation of the nucleoid and formation of the bud did not occur at the same time. Confocal laser scanning light microscopy applied to cells stained for membranes as well as DNA confirmed the behaviour of the nucleoid and nucleoid envelope during cell division. Electron microscopy of cryosubstituted cells confirmed deductions from light microscopy concerning nucleoid presence in relation to the stage of budding, and showed that the nucleoid was observed to occur in both mother and bud cells only at later budding stages. It further suggested that nucleoid envelope formed only after the nucleoid was translocated into the bud, since envelopes only appeared in more mature buds, while naked nucleoids occurred in smaller buds. Nucleoid envelope appeared to originate from the intracytoplasmic membranes (ICM) of both mother cell and bud. There was always a connecting passage between mother cell and bud during the budding process until separation of the two cells. The division cycle of the nucleated planctomycete G. obscuriglobus appears to be a complex process in which chromosomal DNA is transported to the daughter cell bud after initial formation of the bud, and this can be performed repeatedly by a single mother cell. Conclusion: The division cycle of the nucleated planctomycete G. obscuriglobus is a complex process in which chromosomal nucleoid DNA is transported to the daughter cell bud after initial formation of a bud without nucleoid. The new bud nucleoid is initially naked and not surrounded by membrane, but eventually acquires a complete nucleoid envelope consisting of two closely apposed membranes as occurs in the mother cell. The membranes of the new nucleoid envelope surrounding the bud nucleoid are derived from intracytoplasmic membranes of both the mother cell and the bud. The cell division of G. obscuriglobus displays some unique features not known in cells of either prokaryotes or eukaryotes

    Multidisciplinary teams, and parents, negotiating common ground in shared-care of children with long-term conditions: A mixed methods study

    Get PDF
    Background: Limited negotiation around care decisions is believed to undermine collaborative working between parents of children with long-term conditions and professionals, but there is little evidence of how they actually negotiate their respective roles. Using chronic kidney disease as an exemplar this paper reports on a multi-method study of social interaction between multidisciplinary teams and parents as they shared clinical care. Methods. Phases 1 and 2: a telephone survey mapping multidisciplinary teams' parent-educative activities, and qualitative interviews with 112 professionals (Clinical-psychologists, Dietitians, Doctors, Nurses, Play-specialists, Pharmacists, Therapists and Social-workers) exploring their accounts of parent-teaching in the 12 British children's kidney units. Phase 3: six ethnographic case studies in two units involving observations of professional/parent interactions during shared-care, and individual interviews. We used an analytical framework based on concepts drawn from Communities of Practice and Activity Theory. Results: Professionals spoke of the challenge of explaining to each other how they are aware of parents' understanding of clinical knowledge, and described three patterns of parent-educative activity that were common across MDTs: Engaging parents in shared practice; Knowledge exchange and role negotiation, and Promoting common ground. Over time, professionals had developed a shared repertoire of tools to support their negotiations with parents that helped them accomplish common ground during the practice of shared-care. We observed mutual engagement between professionals and parents where a common understanding of the joint enterprise of clinical caring was negotiated. Conclusions: For professionals, making implicit knowledge explicit is important as it can provide them with a language through which to articulate more clearly to each other what is the basis of their intuition-based hunches about parents' support needs, and may help them to negotiate with parents and accelerate parents' learning about shared caring. Our methodology and results are potentially transferrable to shared management of other conditions. © 2013 Swallow et al.; licensee BioMed Central Ltd
    • …
    corecore