1,585 research outputs found

    Equilibrium clumped-isotope effects in doubly substituted isotopologues of ethane

    Get PDF
    We combine path-integral Monte Carlo methods with a new intramolecular potential energy surface to quantify the equilibrium enrichment of doubly substituted ethane isotopologues due to clumped-isotope effects. Ethane represents the simplest molecule to simultaneously exhibit 13C–13C, 13C–D, and D–D clumped-isotope effects, and the analysis of corresponding signatures may provide useful geochemical and biogeochemical proxies of formation temperatures or reaction pathways. Utilizing path-integral statistical mechanics, we predict equilibrium fractionation factors that fully incorporate nuclear quantum effects, such as anharmonicity and rotational-vibrational coupling which are typically neglected by the widely used Urey model. The magnitude of the calculated fractionation factors for the doubly substituted ethane isotopologues indicates that isotopic clumping can be observed if rare-isotope substitutions are separated by up to three chemical bonds, but the diminishing strength of these effects suggests that enrichment at further separations will be negligible. The Urey model systematically underestimates enrichment due to 13C–D and D–D clumped-isotope effects in ethane, leading to small relative errors in the apparent equilibrium temperature, ranging from 5 K at 273.15 K to 30 K at 873.15 K. We additionally note that the rotameric dependence of isotopologue enrichment must be carefully considered when using the Urey model, whereas the path-integral calculations automatically account for such effects due to configurational sampling. These findings are of direct relevance to future clumped-isotope studies of ethane, as well as studies of 13C–13C, 13C–D, and D–D clumped-isotope effects in other hydrocarbons

    Edge effects in a frustrated Josephson junction array with modulated couplings

    Full text link
    A square array of Josephson junctions with modulated strength in a magnetic field with half a flux quantum per plaquette is studied by analytic arguments and dynamical simulations. The modulation is such that alternate columns of junctions are of different strength to the rest. Previous work has shown that this system undergoes an XY followed by an Ising-like vortex lattice disordering transition at a lower temperature. We argue that resistance measurements are a possible probe of the vortex lattice disordering transition as the linear resistance RL(T)A(T)/LR_{L}(T)\sim A(T)/L with A(T)(TTcI) A(T) \propto (T-T_{cI}) at intermediate temperatures TcXY>T>TcIT_{cXY}>T>T_{cI} due to dissipation at the array edges for a particular geometry and vanishes for other geometries. Extensive dynamical simulations are performed which support the qualitative physical arguments.Comment: 8 pages with figs, RevTeX, to appear in Phys. Rev.

    Size-structured populations: immigration, (bi)stability and the net growth rate

    Get PDF
    We consider a class of physiologically structured population models, a first order nonlinear partial differential equation equipped with a nonlocal boundary condition, with a constant external inflow of individuals. We prove that the linearised system is governed by a quasicontraction semigroup. We also establish that linear stability of equilibrium solutions is governed by a generalized net reproduction function. In a special case of the model ingredients we discuss the nonlinear dynamics of the system when the spectral bound of the linearised operator equals zero, i.e. when linearisation does not decide stability. This allows us to demonstrate, through a concrete example, how immigration might be beneficial to the population. In particular, we show that from a nonlinearly unstable positive equilibrium a linearly stable and unstable pair of equilibria bifurcates. In fact, the linearised system exhibits bistability, for a certain range of values of the external inflow, induced potentially by All\'{e}e-effect.Comment: to appear in Journal of Applied Mathematics and Computin

    Hypopituitarism and pregnancy : clinical characteristics, management and pregnancy outcome

    Get PDF
    Altres ajuts: Acord transformatiu CRUE-CSICAltres ajuts: Open Access Funding provided by Universitat Autonoma de Barcelona.Purpose: To describe the clinical characteristics, management and pregnancy outcome of women with prepregnancy hypopituitarism (HYPO) that received care at our center. Methods: Retrospective study describing 12 pregnancies in women with prepregnancy HYPO (two or more pituitary hormonal deficiencies under replacement treatment) that received care during pregnancy at Hospital Santa Creu i Sant Pau. Clinical characteristics, management and pregnancy outcome were systematically collected. Results: Average patients' age was 35 years and HYPO duration at the beginning of pregnancy was 19 years. The most frequent cause of HYPO was surgical treatment of a sellar mass (8 pregnancies). Eight pregnancies were in primigravid women and 10 required assisted reproductive techniques. The hormonal deficits before pregnancy were as follows: GH in 12 women, TSH in 10, gonadotropin in 9, ACTH in 5 and ADH in 2. All deficits were under hormonal substitution except for GH deficit in 4 pregnancies. During pregnancy, 4 new deficits were diagnosed. The dosage of replacement treatment for TSH, ACTH and ADH deficits was increased and GH was stopped. Average gestational age at birth was 40 weeks, gestational weight gain was excessive in 9 women, 8 patients required induction/elective delivery and cesarean section was performed in 6. Average birthweight was 3227 g. No major complications were observed. Five women were breastfeeding at discharge. Conclusions: In this group of women with long-standing HYPO, with careful clinical management (including treatment of new-onset hormonal deficits) pregnancy outcome was satisfactory but with a high rate of excessive gestational weight gain and cesarean section

    Variable-Speed-of-Light Cosmology from Brane World Scenario

    Get PDF
    We argue that the four-dimensional universe on the TeV brane of the Randall-Sundrum scenario takes the bimetric structure of Clayton and Moffat, with gravitons traveling faster than photons instead, while the radion varies with time. We show that such brane world bimetric model can thereby solve the flatness and the cosmological constant problems, provided the speed of a graviton decreases to the present day value rapidly enough. The resolution of other cosmological problems such as the horizon problem and the monopole problem requires supplementation by inflation, which may be achieved by the radion field provided the radion potential satisfies the slow-roll approximation.Comment: 18 pages, LaTeX, revised version to appear in Phys. Rev.

    A global map to aid the identification and screening of critical habitat for marine industries

    Get PDF
    Marine industries face a number of risks that necessitate careful analysis prior to making decisions on the siting of operations and facilities. An important emerging regulatory framework on environmental sustainability for business operations is the International Finance Corporation’s Performance Standard 6 (IFC PS6). Within PS6, identification of biodiversity significance is articulated through the concept of “Critical Habitat”, a definition developed by the IFC and detailed through criteria aligned with those that support internationally accepted biodiversity designations. No publicly available tools have been developed in either the marine or terrestrial realm to assess the likelihood of sites or operations being located within PS6-defined Critical Habitat. This paper presents a starting point towards filling this gap in the form of a preliminary global map that classifies more than 13 million km2 of marine and coastal areas of importance for biodiversity (protected areas, Key Biodiversity Areas [KBA], sea turtle nesting sites, cold- and warm-water corals, seamounts, seagrass beds, mangroves, saltmarshes, hydrothermal vents and cold seeps) based on their overlap with Critical Habitat criteria, as defined by IFC. In total, 5798×103 km2 (1.6%) of the analysis area (global ocean plus coastal land strip) were classed as Likely Critical Habitat, and 7526×103 km2 (2.1%) as Potential Critical Habitat; the remainder (96.3%) were Unclassified. The latter was primarily due to the paucity of biodiversity data in marine areas beyond national jurisdiction and/or in deep waters, and the comparatively fewer protected areas and KBAs in these regions. Globally, protected areas constituted 65.9% of the combined Likely and Potential Critical Habitat extent, and KBAs 29.3%, not accounting for the overlap between these two features. Relative Critical Habitat extent in Exclusive Economic Zones varied dramatically between countries. This work is likely to be of particular use for industries operating in the marine and coastal realms as an early screening aid prior to in situ Critical Habitat assessment; to financial institutions making investment decisions; and to those wishing to implement good practice policies relevant to biodiversity management. Supplementary material (available online) includes other global datasets considered, documentation and justification of biodiversity feature classification, detail of IFC PS6 criteria/scenarios, and coverage calculations

    Scenario of Accelerating Universe from the Phenomenological \Lambda- Models

    Full text link
    Dark matter, the major component of the matter content of the Universe, played a significant role at early stages during structure formation. But at present the Universe is dark energy dominated as well as accelerating. Here, the presence of dark energy has been established by including a time-dependent Λ\Lambda term in the Einstein's field equations. This model is compatible with the idea of an accelerating Universe so far as the value of the deceleration parameter is concerned. Possibility of a change in sign of the deceleration parameter is also discussed. The impact of considering the speed of light as variable in the field equations has also been investigated by using a well known time-dependent Λ\Lambda model.Comment: Latex, 9 pages, Major change

    Orbital effect of in-plane magnetic field on quantum transport in chaotic lateral dots

    Full text link
    We show how the in-plane magnetic field, which breaks time-reversal and rotational symmetries of the orbital motion of electrons in a heterostructure due to the momentum-dependent inter-subband mixing, affects weak localisation correction to conductance of a large-area chaotic lateral quantum dot and parameteric dependences of universal conductance fluctuations in it.Comment: 4 pages with a figur

    Cosmological Evolution of Brane World Moduli

    Get PDF
    We study cosmological consequences of non-constant brane world moduli in five dimensional brane world models with bulk scalars and two boundary branes. We focus on the case where the brane tension is an exponential function of the bulk scalar field, Ubexp(αϕ)U_b \propto \exp{(\alpha \phi)}. In the limit α0\alpha \to 0, the model reduces to the two-brane model of Randall-Sundrum, whereas larger values of α\alpha allow for a less warped bulk geometry. Using the moduli space approximation, we derive the four-dimensional low-energy effective action from a supergravity-inspired five-dimensional theory. For arbitrary values of α\alpha, the resulting theory has the form of a bi-scalar-tensor theory. We show that, in order to be consistent with local gravitational observations, α\alpha has to be small (less than 10210^{-2}) and the separation of the branes must be large. We study the cosmological evolution of the interbrane distance and the bulk scalar field for different matter contents on each branes. Our findings indicate that attractor solutions exist which drive the moduli fields towards values consistent with observations. The efficiency of the attractor mechanism crucially depends on the matter content on each branes. In the five-dimensional description, the attractors correspond to the motion of the negative tension brane towards a bulk singularity, which signals the eventual breakdown of the four-dimensional description and the necessity of a better understanding of the bulk singularity.Comment: 18 pages, 10 figures, typos and factor of 2 corrected, version to appear in Physical Review
    corecore