386 research outputs found
Meat, fish, and ovarian cancer risk: Results from 2 Australian case-control studies, a systematic review, and meta-analysis
Background: Variation in meat and fish intakes has been associated with a risk of some cancers, but evidence for ovarian cancer is limited and inconsistent. Objective: We examined the association between intakes of total meat, red meat, processed meat, poultry, and fish and ovarian cancer risk. Design: Data came from 2 Australian population-based case-control studies conducted 10 y apart. Analyses included a total of 2049 cases and 2191 control subjects. We obtained dietary information via a food-frequency questionnaire. We estimated multivariable-adjusted odds ratios (ORs) for each study by using logistic regression and combined results of the 2 studies by using random-effects models. We also assembled the published evidence in a systematic review and meta-analysis. Results: Although there was no association between total or red meat intake and ovarian cancer risk, women with the highest intake of processed meat had a significantly increased risk of ovarian cancer in the 2 case-control studies (combined OR: 1.18; 95 CI: 1.15, 1.21) and the meta-analysis 7 studies; pooled relative risk (RR): 1.20; 95% CI: 1.07, 1.34. In contrast, a frequent intake of poultry was associated with borderline significant reductions in risk in the 2 case-control studies (combined OR: 0.83; 95% CI: 0.67, 1.03) and the meta-analysis including 7 additional studies (pooled RR: 0.90; 95% CI: 0.79, 1.01). High fish intake was associated with a significantly reduced risk in the 2 case-control studies (combined OR: 0.76; 95% CI: 0.62, 0.94) and a smaller borderline significant reduction in the meta-analysis (6 additional studies; pooled RR: 0.84; 95% CI: 0.68, 1.03). Conclusion: Our results suggest that low consumption of processed meat and higher consumption of poultry and fish may reduce the risk of ovarian cancer. © 2010 American Society for Nutrition
Thermal leptogenesis in a model with mass varying neutrinos
In this paper we consider the possibility of neutrino mass varying during the
evolution of the Universe and study its implications on leptogenesis.
Specifically, we take the minimal seesaw model of neutrino masses and introduce
a coupling between the right-handed neutrinos and the dark energy scalar field,
the Quintessence. In our model, the right-handed neutrino masses change as the
Quintessence scalar evolves. We then examine in detail the parameter space of
this model allowed by the observed baryon number asymmetry. Our results show
that it is possible to lower the reheating temperature in this scenario in
comparison with the case that the neutrino masses are unchanged, which helps
solve the gravitino problem. Furthermore, a degenerate neutrino mass patten
with larger than the upper limit given in the minimal leptogenesis
scenario is permitted.Comment: 18 pages, 7 figures, version to appear in PR
Using the past to constrain the future: how the palaeorecord can improve estimates of global warming
Climate sensitivity is defined as the change in global mean equilibrium
temperature after a doubling of atmospheric CO2 concentration and provides a
simple measure of global warming. An early estimate of climate sensitivity,
1.5-4.5{\deg}C, has changed little subsequently, including the latest
assessment by the Intergovernmental Panel on Climate Change.
The persistence of such large uncertainties in this simple measure casts
doubt on our understanding of the mechanisms of climate change and our ability
to predict the response of the climate system to future perturbations. This has
motivated continued attempts to constrain the range with climate data, alone or
in conjunction with models. The majority of studies use data from the
instrumental period (post-1850) but recent work has made use of information
about the large climate changes experienced in the geological past.
In this review, we first outline approaches that estimate climate sensitivity
using instrumental climate observations and then summarise attempts to use the
record of climate change on geological timescales. We examine the limitations
of these studies and suggest ways in which the power of the palaeoclimate
record could be better used to reduce uncertainties in our predictions of
climate sensitivity.Comment: The final, definitive version of this paper has been published in
Progress in Physical Geography, 31(5), 2007 by SAGE Publications Ltd, All
rights reserved. \c{opyright} 2007 Edwards, Crucifix and Harriso
The primary cosmic ray composition between 10**15 and 10**16 eV from Extensive Air Showers electromagnetic and TeV muon data
The cosmic ray primary composition in the energy range between 10**15 and
10**16 eV, i.e., around the "knee" of the primary spectrum, has been studied
through the combined measurements of the EAS-TOP air shower array (2005 m
a.s.l., 10**5 m**2 collecting area) and the MACRO underground detector (963 m
a.s.l., 3100 m w.e. of minimum rock overburden, 920 m**2 effective area) at the
National Gran Sasso Laboratories. The used observables are the air shower size
(Ne) measured by EAS-TOP and the muon number (Nmu) recorded by MACRO. The two
detectors are separated on average by 1200 m of rock, and located at a
respective zenith angle of about 30 degrees. The energy threshold at the
surface for muons reaching the MACRO depth is approximately 1.3 TeV. Such muons
are produced in the early stages of the shower development and in a kinematic
region quite different from the one relevant for the usual Nmu-Ne studies. The
measurement leads to a primary composition becoming heavier at the knee of the
primary spectrum, the knee itself resulting from the steepening of the spectrum
of a primary light component (p, He). The result confirms the ones reported
from the observation of the low energy muons at the surface (typically in the
GeV energy range), showing that the conclusions do not depend on the production
region kinematics. Thus, the hadronic interaction model used (CORSIKA/QGSJET)
provides consistent composition results from data related to secondaries
produced in a rapidity region exceeding the central one. Such an evolution of
the composition in the knee region supports the "standard" galactic
acceleration/propagation models that imply rigidity dependent breaks of the
different components, and therefore breaks occurring at lower energies in the
spectra of the light nuclei.Comment: Submitted to Astroparticle Physic
Sortase-Modified Cholera Toxoids Show Specific Golgi Localization
Cholera toxoid is an established tool for use in cellular tracing in neuroscience and cell biology. We use a sortase labeling approach to generate site-specific N-terminally modified variants of both the A2-B5 heterohexamer and B5 pentamer forms of the toxoid. Both forms of the toxoid are endocytosed by GM1-positive mammalian cells, and while the heterohexameric toxoid was principally localized in the ER, the B5 pentamer showed an unexpectedly specific localization in the medial/trans-Golgi. This study suggests a future role for specifically labeled cholera toxoids in live-cell imaging beyond their current applications in neuronal tracing and labeling of lipid rafts in fixed cells
Measurement of the residual energy of muons in the Gran Sasso underground Laboratories
The MACRO detector was located in the Hall B of the Gran Sasso underground
Laboratories under an average rock overburden of 3700 hg/cm^2. A transition
radiation detector composed of three identical modules, covering a total
horizontal area of 36 m^2, was installed inside the empty upper part of the
detector in order to measure the residual energy of muons. This paper presents
the measurement of the residual energy of single and double muons crossing the
apparatus. Our data show that double muons are more energetic than single ones.
This measurement is performed over a standard rock depth range from 3000 to
6500 hg/cm^2.Comment: 28 pages, 9 figure
Muon Energy Estimate Through Multiple Scattering with the Macro Detector
Muon energy measurement represents an important issue for any experiment
addressing neutrino induced upgoing muon studies. Since the neutrino
oscillation probability depends on the neutrino energy, a measurement of the
muon energy adds an important piece of information concerning the neutrino
system. We show in this paper how the MACRO limited streamer tube system can be
operated in drift mode by using the TDC's included in the QTPs, an electronics
designed for magnetic monopole search. An improvement of the space resolution
is obtained, through an analysis of the multiple scattering of muon tracks as
they pass through our detector. This information can be used further to obtain
an estimate of the energy of muons crossing the detector. Here we present the
results of two dedicated tests, performed at CERN PS-T9 and SPS-X7 beam lines,
to provide a full check of the electronics and to exploit the feasibility of
such a multiple scattering analysis. We show that by using a neural network
approach, we are able to reconstruct the muon energy for 40 GeV. The
test beam data provide an absolute energy calibration, which allows us to apply
this method to MACRO data.Comment: 25 pages, 11 figures, Submitted to Nucl. Instr. & Meth.
Low energy atmospheric muon neutrinos in MACRO
We present the measurement of two event samples induced by atmospheric
of average energy . In the first sample,
the neutrino interacts inside the MACRO detector producing an upward-going muon
leaving the apparatus. The ratio of the number of observed to expected events
is with an angular
distribution similar to that expected from the Bartol atmospheric neutrino
flux. The second is a mixed sample of internally produced downward-going muons
and externally produced upward-going muons stopping inside the detector. These
two subsamples are selected by topological criteria; the lack of timing
information makes it impossible to distinguish stopping from downgoing muons.
The ratio of the number of observed to expected events is . Using the ratio of the two subsamples (for
which most theoretical uncertainties cancel) we can test the pathlength
dependence of the oscillation hypothesis. The probability of agreement with the
no-oscillation hypothesis is 5% .
The deviations of our observations from the expectations has a preferred
interpretation in terms of oscillations with maximal mixing and
. These parameters are in agreement
with our results from upward throughgoing muons, induced by of much
higher energies.Comment: 7 pages, 6 figures. Submitted to Phys. Lett.
Search for diffuse neutrino flux from astrophysical sources with MACRO
Many galactic and extragalactic astrophysical sources are currently
considered promising candidates as high energy neutrino emitters. Astrophysical
neutrinos can be detected as upward-going muons produced in charged-current
interactions with the medium surrounding the detector. The expected neutrino
fluxes from various models start to dominate on the atmospheric neutrino
background at neutrino energies above some tens of TeV. We present the results
of a search for an excess of high energy upward-going muons among the sample of
data collected by MACRO during ~5.8 years of effective running time. No
significant evidence for this signal was found. As a consequence, an upper
limit on the flux of upward-going muons from high-energy neutrinos was set at
the level of 1.7 10^(-14) cm^(-2) s^(-1) sr^(-1).
The corresponding upper limit for the diffuse neutrino flux was evaluated
assuming a neutrino power law spectrum. Our result was compared with
theoretical predictions and upper limits from other experiments.Comment: 19 pages, 8 figures, 2 table
Quantitative N- or C-Terminal Labelling of Proteins with Unactivated Peptides by Use of Sortases and a d-Aminopeptidase
Quantitative and selective labelling of proteins is widely used in both academic and industrial laboratories, and catalytic labelling of proteins using transpeptidases, such as sortases, has proved to be a popular strategy for such selective modification. A major challenge for this class of enzymes is that the majority of procedures require an excess of the labelling reagent or, alternatively, activated substrates rather than simple commercially sourced peptides. We report the use of a coupled enzyme strategy which enables quantitative N- and C-terminal labelling of proteins using unactivated labelling peptides. The use of an aminopeptidase in conjunction with a transpeptidase allows sequence-specific degradation of the peptide by-product, shifting the equilibrium to favor product formation, which greatly enhances the reaction efficiency. Subsequent optimisation of the reaction allows N-terminal labelling of proteins using essentially equimolar ratios of peptide label to protein and C-terminal labelling with only a small excess. Minimizing the amount of substrate required for quantitative labelling has the potential to improve industrial processes and facilitate the use of transpeptidation as a method for protein labelling
- …