811 research outputs found

    Designing a web-application to support home-based care of childhood CKD stages 3-5: Qualitative study of family and professional preferences

    Get PDF
    Background: There is a lack of online, evidence-based information and resources to support home-based care of childhood CKD stages 3-5. Methods. Qualitative interviews were undertaken with parents, patients and professionals to explore their views on content of the proposed online parent information and support (OPIS) web-application. Data were analysed using Framework Analysis, guided by the concept of Self-efficacy. Results: 32 parents, 26 patients and 12 professionals were interviewed. All groups wanted an application that explains, demonstrates, and enables parental clinical care-giving, with condition-specific, continously available, reliable, accessible material and a closed communication system to enable contact between families living with CKD. Professionals advocated a regularly updated application to empower parents to make informed health-care decisions. To address these requirements, key web-application components were defined as: (i) Clinical care-giving support (information on treatment regimens, video-learning tools, condition-specific cartoons/puzzles, and a question and answer area) and (ii) Psychosocial support for care-giving (social-networking, case studies, managing stress, and enhancing families' health-care experiences). Conclusions: Developing a web-application that meets parents' information and support needs will maximise its utility, thereby augmenting parents' self-efficacy for CKD caregiving, and optimising outcomes. Self-efficacy theory provides a schema for how parents' self-efficacy beliefs about management of their child's CKD could potentially be promoted by OPIS. © 2014 Swallow et al.; licensee BioMed Central Ltd

    Measuring Pancharatnam's relative phase for SO(3) evolutions using spin polarimetry

    Full text link
    In polarimetry, a superposition of internal quantal states is exposed to a single Hamiltonian and information about the evolution of the quantal states is inferred from projection measurements on the final superposition. In this framework, we here extend the polarimetric test of Pancharatnam's relative phase for spin−1/2-{1/2} proposed by Wagh and Rakhecha [Phys. Lett. A {\bf 197}, 112 (1995)] to spin j≥1j\geq 1 undergoing noncyclic SO(3) evolution. We demonstrate that the output intensity for higher spin values is a polynomial function of the corresponding spin−1/2-{1/2} intensity. We further propose a general method to extract the noncyclic SO(3) phase and visibility by rigid translation of two π/2\pi /2 spin flippers. Polarimetry on higher spin states may in practice be done with spin polarized atomic beams.Comment: New title, minor corrections, journal reference adde

    Design and characterization of receive-only surface coil arrays at 3T with integrated solid high permittivity materials

    Get PDF
    A receive-only surface coil array for 3 Tesla integrating a high-permittivity material (HPM) with a relative permittivity of 660 was designed and constructed and subsequently its performance was evaluated and compared in terms of transmit field efficiency and specific absorption ratio (SAR) during transmission, and signal-to-noise ratio during reception, with a conventional identically-sized surface coil array. Finite-difference time-domain simulations, bench measurements and in-vivo neck imaging on three healthy volunteers were performed using a three-element surface coil array with integrated HPMs placed around the larynx. Simulation results show an increase in local transmit efficiency of the body coil of similar to 10-15% arising from the presence of the HPM. The receiver efficiency also increased by approximately 15% close to the surface. Phantom experiments confirmed these results. In-vivo scans using identical transmit power resulted in SNR gains throughout the laryngeal area when compared with the conventional surface coil array. In particular specifically around the carotid arteries an average SNR gain of 52% was measured averaged over the three subjects, while in the spine an average of 20% SNR gain was obtained. (C) 2019 The Authors. Published by Elsevier Inc.Radiolog

    Intraflagellar transport trains and motors: insights from structure

    Get PDF
    Intraflagellar transport (IFT) sculpts the proteome of cilia and flagella; the antenna-like organelles found on the surface of virtually all human cell types. By delivering proteins to the growing ciliary tip, recycling turnover products, and selectively transporting signalling molecules, IFT has critical roles in cilia biogenesis, quality control, and signal transduction. IFT involves long polymeric arrays, termed IFT trains, which move to and from the ciliary tip under the power of the microtubule-based motor proteins kinesin-II and dynein-2. Recent top-down and bottom-up structural biology approaches are converging on the molecular architecture of the IFT train machinery. Here we review these studies, with a focus on how kinesin-II and dynein-2 assemble, attach to IFT trains, and undergo precise regulation to mediate bidirectional transport

    Effects of simulated error-sources on different 3-D CSI-EPT strategies

    Get PDF
    Three-dimensional contrast source inversion-electrical properties tomography (3-D CSI-EPT) is an iterative reconstruction method that estimates the electrical properties of tissue from transmit field magnetic resonance data. However, in order to bring 3-D CSI-EPT into practice for complex tissue structures and to understand the origin and effect of errors, insight in the sensitivities of reconstruction accuracy to the major error-sources is necessary. In this paper, different strategies for implementing 3-D CSI-EPT, including their iterative structure, are presented, of which the regularized implementation shows the most potential to be used in practice. Moreover, the influence of initialization, noise, stopping criteria, incident fields, B1-maps, transceive phase and domain truncation are discussed. We show that of all these different error-sources, initialization, accurate coil models and domain truncation have the most dramatic effect on electrical properties reconstructions in practice.Imaging- and therapeutic targets in neoplastic and musculoskeletal inflammatory diseas

    Proton nuclear magnetic resonance J-spectroscopy of phantoms containing brain metabolites on a portable 0.05 T MRI scanner

    Get PDF
    We examined approaches for obtaining H-1 NMR spectra of brain metabolites on a low-field (B-0 = 0.05 T) portable MRI scanner, which was developed in our laboratory with the aim of bringing cost-effective radiological services to populations in underserved, remote regions. The low static magnetic field B-0 dictates low signal to noise ratio for metabolites in the mM concentration range, and results in an overall spectral region for the H-1 resonances of these metabolites narrower than the linewidth obtainable in our scanner. The narrow spectral range also precludes the possibility of suppressing the large contribution of the water resonance at the acquisition stage.We used a spectroscopic Carr-Purcell-Meiboom-Gill (CPMG) sequence to acquire multiecho data from solutions of J-coupled brain metabolites, focusing on lactic acid, a metabolite whose concentration is negligible in the healthy brain and increases significantly in several disease conditions. The J spectra we obtained for lactate from the Fourier transformation of the multiecho data are spectrally well-resolved for a range of echo spacing values. We show that the J spectra at different echo spacings fit well with simulations of the evolution of echo train signal of the lactate under the same conditions. Applying a Jrefocused variant of the CPMG sequence, the J modulation of the echo decay is removed, providing a way for subtracting the large contribution of the non-modulated component in the J spectrum in conditions where notching it using post-processing methods is impossible. We also demonstrate by means of experimental data and simulations that in our experimental conditions, J-spectra of other prominent brain metabolites, such as the neurotransmitter glutamate, do not yield discernible peaks and only contribute to a broad peak at zero frequency. (C) 2020 The Author(s). Published by Elsevier Inc.Neuro Imaging Researc

    Orbital effect of in-plane magnetic field on quantum transport in chaotic lateral dots

    Full text link
    We show how the in-plane magnetic field, which breaks time-reversal and rotational symmetries of the orbital motion of electrons in a heterostructure due to the momentum-dependent inter-subband mixing, affects weak localisation correction to conductance of a large-area chaotic lateral quantum dot and parameteric dependences of universal conductance fluctuations in it.Comment: 4 pages with a figur

    Characterization of displacement forces and image artifacts in the presence of passive medical implants in low-field (< 100 mT) permanent magnet-based MRI systems, and comparisons with clinical MRI systems

    Get PDF
    Purpose: To investigate the displacement forces and image artifacts associated with passive medical implants for recently-developed low-field (128) turbo spin echo sequences can be run with short inter-pulse times (5-10 ms) within SAR limits.Conclusions: This work presents the first evaluation of the effects of passive implants at field strengths less than 100 mT in terms of displacement forces, image artifacts and SAR. The results support previous claims that such systems can be used safely and usefully in challenging enviroments such as the intensive care unit.Radiolog

    In vivo 3D brain and extremity MRI at 50 mT using a permanent magnet Halbach array

    Get PDF
    Purpose To design a low-cost, portable permanent magnet-based MRI system capable of obtaining in vivo MR images within a reasonable scan time. Methods A discretized Halbach permanent magnet array with a clear bore diameter of 27 cm was designed for operation at 50 mT. Custom-built gradient coils, RF coil, gradient amplifiers, and RF amplifier were integrated and tested on both phantoms and in vivo. Results Phantom results showed that the gradient nonlinearity in the y-direction and z-direction was less than 5% over a 15-cm FOV and did not need correcting. For the x-direction, it was significantly greater, but could be partially corrected in postprocessing. Three-dimensional in vivo scans of the brain of a healthy volunteer using a turbo spin-echo sequence were acquired at a spatial resolution of 4 x 4 x 4 mm in a time of about 2 minutes. The T-1-weighted and T-2-weighted scans showed a good degree of tissue contrast. In addition, in vivo scans of the knee of a healthy volunteer were acquired at a spatial resolution of about 3 x 2 x 2 mm within 12 minutes to show the applicability of the system to extremity imaging. Conclusion This work has shown that it is possible to construct a low-field MRI unit with hardware components costing less than 10 000 Euros, which is able to acquire human images in vivo within a reasonable data-acquisition time. The system has a high degree of portability with magnet weight of approximately 75 kg, gradient and RF amplifiers each 15 kg, gradient coils 10 kg, and spectrometer 5 kg.Neuro Imaging Researc
    • …
    corecore