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Effects of Simulated Error-Sources on Different
3-D CSI-EPT Strategies

Reijer L. Leijsen, Wyger M. Brink, Andrew G. Webb, and Rob F. Remis

Abstract— Three-dimensional contrast source inversion-
electrical properties tomography (3-D CSI-EPT) is an iter-
ative reconstruction method that estimates the electrical
properties of tissue from transmit field magnetic resonance
data. However, in order to bring 3-D CSI-EPT into practice
for complex tissue structures and to understand the origin
and effect of errors, insight in the sensitivities of recon-
struction accuracy to the major error-sources is necessary.
In this paper, different strategies for implementing 3-D CSI-
EPT, including their iterative structure, are presented, of
which the regularized implementation shows the most po-
tential to be used in practice. Moreover, the influence of
initialization, noise, stopping criteria, incident fields, B1-
maps, transceive phase and domain truncation are dis-
cussed. We show that of all these different error-sources,
initialization, accurate coil models and domain truncation
have the most dramatic effect on electrical properties re-
constructions in practice.

Index Terms— Electrical Properties Tomography,
magnetic resonance imaging, three-dimensional contrast
source inversion, total variation regularization

I. INTRODUCTION

KNOWLEDGE about tissue electrical properties (EPs),
consisting of the conductivity (σ) and the permittivity

(ε), is essential for determining accurate specific absorption
rate levels in MRI and for patient-specific electromagnetic
modeling that is performed prior to hyperthermia therapy
treatment [1], [2]. Furthermore, these parameters have the
potential to be used as biomarkers in clinical applications,
since it is possible to differentiate between ischemic and
hemorrhagic strokes [3] and between benign and malignant
breast lesions [4] based on the change in EPs.

The retrieval of EPs of biological tissue from measurements
of magnetic fields generated by radiofrequency coils in a
magnetic resonance imaging (MRI) scanner is called electrical
properties tomography (EPT) and is a topic that has gained
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increasing attention in the last few years (see, for example,
the three recent reviews [3], [5], [6]). Most EPT methods
are based on a modified Helmholtz equation derived from
Maxwell’s equations in differential form, which shows the
direct relationship between the EPs and the magnetic field
strength (H), given by

∇2H = −∇η

η
× (∇×H)− k2H, (1)

with k2 = ω2µ(ε− jσ/ω) and η = σ + jωε, where ω denotes
the angular frequency and µ the permeability. By assuming
smooth transitions between tissue parameters, the first term
on the right-hand side can be omitted and the conventional
Helmholtz equation can be obtained. This allows for the
computation of the EPs in a direct manner [7]. The insight
that the conductivity is primarily influenced by the phase,
while the permittivity is mainly determined by the magnitude
of the radiofrequency transmit field, resulted in phase- and
magnitude-only Helmholtz-based approaches [8]–[10]. This
additional simplification implies linearity of the phase-based
equation which supersedes the requirement of the transceive
phase assumption (the estimation of the transmit phase as half
the transceive phase), and, since the magnitude map can be
omitted, significantly speeds up the scan time which is invalu-
able for practical conductivity mapping implementations [11].
However, since the method assumes spatial homogeneity of
the underlying EPs, severe errors occur at boundaries between
different tissue types. The additional homogeneity assumptions
in the magnitude or phase of the transmit field degrade the
accuracy in EP mapping even further. In addition, the second
order differential operator makes them extremely sensitive to
noise [12].

More advanced reconstruction methods such as local
Maxwell tomography [13], [14], convection-reaction EPT [15]
and gradient-based EPT [16] solve Eq. (1) by deriving a set
of linear equations, which enables improved reconstructions at
tissue boundaries. The boundary problem is also solved in first-
order induced-current EPT [17] and by making use of only
first order differential operators and an integral formulation
it reduces noise sensitivities. Cauchy-based EPT from [18]
shows many similarities, but the EPs are reconstructed in a
direct and explicit fashion. In global Maxwell tomography and
contrast-source inversion EPT (CSI-EPT) integral formulations
are used which avoid derivatives of the transmit MR data
altogether. These methods were initially implemented in 2-
D [19], [20], but have been extended to 3-D [21]–[24], which
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circumvents any assumption of longitudinal homogeneity of
the object or electromagnetic fields, which is not applicable in
general [24].

Three-dimensional CSI-EPT does not have to solve any
time-consuming forward problems, in contrast to global
Maxwell tomography, and has been shown in simulations to
be able to accurately reconstruct tissue transitions in three-
dimensional settings [23]. However, practical 3-D CSI-EPT
implementations can produce several artifacts that are difficult
to classify from measurement data only. In order to improve
practical implementations, insights about the origin and effect
of different error-sources are necessary.

In this manuscript, different strategies for implementing
3-D CSI-EPT are simulated: error-sources due to initialization,
noise, iterative stopping criteria, incident fields, B1-mapping,
transceive phase assumption and domain size are individu-
ally examined. The effect that regularization can have on
the convergence of the cost functional and on overfitting to
noise is also shown. Additionally, an overview is presented
that shows where in the iterative process the computational
expensive steps occur, and the time requirement of the most
computationally expensive operators is discussed.

II. THEORY

In this section, the integral representations for the EM
field and the CSI-EPT method are briefly summarized. The
background is assumed to consists of free space, and the
spatially-varying conductivity and permittivity of objects are
isotropic at the Larmor frequency ω. The permeability µ is
assumed to be tissue-independent and equal to that of free
space. Throughout this manuscript, the time factor convention
exp (+jωt) is adopted.

A. Fundamental Electromagnetic Field Representations

Let the magnetic resonance coil occupy a bounded source
domain S and let an object occupy a disjoint object domain
D. An externally applied current density distribution J ext on
the coil generates an electromagnetic field {E,H} which
is defined by the superposition of the incident and scattered
fields.

The incident electromagnetic field is the field that is present
inside the coil in the absence of an object and is given by

Einc(x) = (k20 +∇∇·)Aext(x) (2)

and

H inc(x) = η0∇×Aext(x), (3)

where Aext is the vector potential given by

Aext(x) = η−10

∫

x′∈S
G(x− x′)J ext(x′) dV, (4)

with G the scalar Green’s function of the homogeneous
background medium defined as

G(x− x′) =
exp(−jk0|x− x′|)

4π|x− x′| , for x− x′ 6= 0 (5)

with x = (x, y, z) the position vector, η0 = jωε0 the per-
unit-length admittance of the background medium and k0 =
ω/c0 the wavenumber of the background medium, with c0 the
electromagnetic wave speed in vacuum. Note that this Green’s
function assumes that there are no other current sources in
infinite space other than the currents on the coil.

The scattered field due to the presence of an object is given
by

Esca(x) = (k20 +∇∇·)Asca(x) (6)

and

H sca(x) = η0∇×Asca(x), (7)

where Asca is the vector potential given by

Asca(x) =

∫

x′∈D
G(x− x′)w(x′) dV, (8)

with w the contrast source, defined as w(x) = χ(x)E(x),
with χ(x) = η(x)/η0− 1 the contrast function describing the
object and containing the information about the EPs [25]–[27].
The contrast source is the scattering current density distribu-
tion normalized by the free space per-unit-length admittance,
including both the conduction and displacement current den-
sity distributions, that results due to the presence of the object.
The scattering current density and consequently the scattered
field would vanish if the object is absent (η = η0). The contrast
function is the additional per-unit-length admittance imposed
on top of the free space per-unit-length admittance, normalized
by free space per-unit-length admittance. Once the contrast
source is established due to the object, then it can be viewed
as a source situated in free space.

B. Contrast Source Inversion-Electrical Properties
Tomography

In EPT the goal is to reconstruct the contrast function
χ from B+

1 = µ0

2 (Hx + jHy) field measurements. Several
EPT approaches have operators that act directly on this field
data to retrieve the EPs [3], [5], while in CSI-EPT operators
effectively operate on the scattered B+

1 field component. The
scattered component is denoted by

B+;sca
1 = µ0

Hsca
x + jHsca

y

2
(9)

and this field is taken as a starting point. In CSI-EPT, the
incident field is assumed to be a known quantity which can
be obtained from simulations based on a known coil geometry,
or derived from phantom experiments with known electrical
properties. The scattered field of Eq. (9) is then easily derived
by subtracting the incident field from the measured B+

1 field.

1) Naive CSI-EPT: CSI-EPT makes use of the fact that Eq.
(9) can also be computed from knowledge of the contrast
source w, via Eq. (7), and searches for a contrast source w
such that the mismatch between the measured field and the
predicted fields is minimized. This mismatch is represented
by the data residual, given by

ρ = B+;sca
1 − GB{w}. (10)
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Fig. 1. Flowchart of the steps that are taken in the different CSI-EPT methods: naive CSI-EPT (N-CSI), traditional CSI-EPT (T-CSI) and regularized
CSI-EPT (R-CSI). The shades of red show an estimation of the most computational expensive steps. Darker red means a higher computational
complexity. Note that the computation of E is also a computational expensive step in N-CSI. However, it only has to be computed once.

In this equation, GB is the data operator that computes B+;sca
1

from estimations of the contrast source via

GB{w}(x) =
ω

c20
∇̃ ·

∫

x′∈Dobj
G(x− x′)w(x′) dV, (11)

with ∇̃ = − 1
2 (ix + jiy)∂z + 1

2 (∂x + j∂y)iz . This mismatch
can be minimized by iteratively minimizing the data func-
tional [28]

FB (w) =
‖ρ‖2

‖B+;sca
1 ‖2

, (12)

where ||·|| denotes the norm defined on D, which is introduced
in Appendix I.

Once the optimal contrast source is obtained, the con-
trast function is obtained by minimizing the discrepancy in
Maxwell’s equations. This is realized by introducing the object
residual, given by

r = χEinc −w + χGE{w}, (13)

where GE is the object operator that computes Esca, given by

GE{w}(x) = (k20 +∇∇·)
∫

x′∈D
G(x− x′)w(x′) dV. (14)

This object residual is minimized when

χ =

∑
kwkEk∑
k |Ek|2

, (15)

where the index k ranges over the set {x, y, z}. Hereafter, this
method is referred to as N-CSI.

2) Traditional CSI-EPT: Traditional CSI-EPT ensures that
Maxwell’s equations are fulfilled at every iteration by enforc-
ing an object functional, given by

FE (w, χ) =
‖r‖2
‖χEinc‖2 , (16)

which is combined with the data functional into a total
functional as

FT (w, χ) = FB (w) + FE (w, χ) , (17)

which gives rise to a non-linear optimization problem in which
the contrast source and contrast function are updated in a
two-step manner at each iteration [23]. The update step of
the contrast source is presented in Appendix II-A and two
different contrast function update steps, i.e. the traditionally
used direct method as well as a conjugate gradient method, are
presented in Appendix II-B. Throughout this manuscript, the
minimization of this total functional FT is denoted by T-CSI.
Specifically, T-CSI-dir denotes the application of the direct
update step for the contrast function and T-CSI-cg denotes the
use of the conjugate gradient update step.

3) Regularized CSI-EPT: When the data is perturbed by
noise, the approach has the tendency to overfit. To reduce this
effect, a multiplicative total variation regularization parameter
is added to T-CSI. Since the regularizing objective function is
multiplied by the sum of the data and objective functional
instead of added to these functionals, this implementation
has the advantage that no artificial regularization parameter
is required, which otherwise would require extensive tuning
and vary from problem to problem. It has been shown to be
effective for 2-D CSI-EPT implementations [20], [29]. The
regularization functional FR is given by

F
[n]
R = (FB + FE)F

[n]
TV , (18)

where the total variation factor is defined as [30]

F
[n]
TV =

1

V

∫

D

|∇χ[n]|2 + (δ[n])2

|∇χ[n−1]|2 + (δ[n])2
dV, (19)

with the steering parameter chosen as [31]

(δ[n])2 =
1

V

∫

D
|∇χ[n−1]|2 dV. (20)

Since the total variation factor is independent of the contrast
source, the regularization does not change the update for w,
but it does adjust the update for χ. The altered conjugate
gradient updates for χ are presented in Appendix II-C. In this
manuscript, this third regularized implementation of CSI-EPT
is denoted by R-CSI.
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The different cost functionals represent the error that still
remains in the data and object equation. CSI-EPT continues
the iterative process for example as long as the cost functional
is larger than a predefined value, or a predefined maximum
number of iterations has not yet been reached. The latter is
used throughout this manuscript.

The three methods and their steps as described in Ap-
pendix II are presented as a flowchart in Fig. 1. After initial-
ization, the iterative process of updating the contrast source
(and the electric field and contrast function) is started, until
a stopping criterion has been reached. The shades of red
indicate the computational cost. Darker colors indicate a higher
computational complexity.

III. SIMULATION SETUP

This study was performed in a 7 T neuroimaging config-
uration, where a head-sized birdcage transmit coil driven in
quadrature at 300 MHz was simulated using XFdtd (XF7.5,
Remcom State College, PA, USA). The birdcage coil model
has 16 rungs, a length of 195 mm and a diameter of 300 mm,
and is surrounded by an RF shield which is 220 mm in length
and 360 mm in diameter. A resonant model of the coil was nu-
merically tuned using 7.1 pF capacitors, and loaded by either
the male body model Duke or the female body model Ella from
the virtual family dataset with their corpus callosum centered
in the coil [32]. An ideal version of the coil was also simulated,
where the capacitors were replaced by 50 Ohm voltage sources
with 1 volt amplitudes driven such that a circular polarization
was obtained [33]. The resulting current density on the coil
structure was subsequently used to derive incident and total
fields required for CSI-EPT using Eqs. (2)–(5), for each of
the simulated configurations. The coils were also driven in
anti-quadrature mode with an opposite phase shift between
the sources, and the same steps were performed to obtain the
receive fields that were used to obtain the transceive phase. All
custom codes were implemented using MATLAB 2019b (The
MathWorks, Inc., Natick, Massachusetts, United States). The
total fields are computed for head models derived from the
Duke body model. These head models occupy domains that
range from 105x83x43 up to 105x83x73 voxels, each with
dimensions of 2.5x2.5x3.5 mm3.

IV. STRATEGIES

Figure 2 shows the conductivity and relative permittivity
maps of the true model and those from different recon-
struction strategies, evaluated on the three-dimensional Duke
head model with a domain size of 105x83x43 voxels, and
initialized with a homogeneous mask containing the average
values of the EPs (σ = 0.58 S/m, εr = 43) followed by a
forward computation to retrieve the initialization of the electric
field strength and contrast source. This initialization has been
used throughout this manuscript, unless stated otherwise. The
depicted transversal and coronal slices are taken through the
center of the head coil. Figures 2b,g show the reconstructions
that are derived from N-CSI after 10,000 iterations. The
approach converges to a reconstruction that is an extremely
poor representation of the true EP model. The reconstructions

with T-CSI-dir after 10,000 iterations, presented in Figs. 2c,h,
give an improved reconstruction, but the quality is still poor.
By updating the contrast function not via the direct method,
but with the conjugate gradient method as discussed in Ap-
pendix II-B, a significant improvement in the reconstructions is
achieved, see Figs. 2d,i. Figures 2e,j show that R-CSI results in
a similar reconstruction result as T-CSI-cg, as can be expected
in the absence of noise. In these two approaches the low E-
field issue results in a major reconstruction artifact [20], [23].
Its location is for clarification indicated with a black arrow in
the R-CSI permittivity map. Line profiles through the center of
the object for the T-CSI-cg and R-CSI maps, as well as line
profiles through the low E-field artifact for the R-CSI map
are presented in Fig. S2 in the Supplementary Information.
[R1] The mean and standard deviation of the three main tissue
regions (white matter, gray matter and cerebrospinal fluid), as
well as the relative residual error (RRE; see Appendix III-A)
of the whole volume from the reconstruction results of Fig. 2
are presented in Table S2

V. ERROR-SOURCES

Due to the fact that T-CSI-cg and R-CSI show an overall
superior EP map reconstruction, we focus on these methods
in our error-source analysis.

A. Initialization state

One of the key error-sources in CSI-EPT is the initialization,
i.e. the starting condition for the iterative process. Proper
initialization can prevent CSI-EPT from reaching a local
minimum and reduce the computation time that is necessary to
reach the tolerance level of the cost function. Reconstruction
results from different initializations are presented in Section S1
in the Supplementary Information. The data show that initial-
izing the reconstruction technique with, for example, backpro-
jection can result in a stagnation of the iterative process, where
a local minimum is reached that corresponds to inaccurate
EPs. Certain local minima can be prevented by incorporating
a priori information into the initialization, such as the average
expected values for the EPs. The determination of a good
initialization is, however, not straightforward.

B. Noise

A second important error-source in CSI-EPT is noise in
the B+

1 map. Figure 3 shows the T-CSI-cg and R-CSI recon-
structions for noisy data (Gaussian noise added to the real
and imaginary part of B+

1 ) with a signal-to-noise ratio (SNR;
see Appendix III-B) of 75 and 50, to assess their noise sen-
sitivity. The presence of noise degrades the reconstruction of
smaller tissue structures, but the main structures are properly
reconstructed for both SNR levels after 1000 iterations (see
Figs. 3a-d,g-j). Note that the noise seems to reduce the low
E-field artifact in the regularized reconstruction.

The degradation due to the presence of noise is also depicted
in Figure 4, which shows the relative residual error as a
quantification of the results from the different strategies after
different numbers of iterations. Figure 4a shows the RRE
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Fig. 2. Reconstructions from different CSI-EPT strategies. The ground truth (a,f), the reconstructions of N-CSI (b,g), of T-CSI-dir (c,h), T-CSI-cg
(d,i) and R-CSI (e,j) after 10,000 iterations. Conductivity (a-e) and relative permittivity (f-j).
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Fig. 3. Noise sensitivity. The reconstructions of T-CSI-cg and R-CSI
after 1000 iterations when noise with an SNR of 75 is implemented
(a,g and b,h, respectively), and the reconstructions at different iteration
numbers when an SNR of 50 is implemented (c-f and i-l). Conductivity
(a-f) and relative permittivity (g-l).

for the noiseless case, corresponding to the data shown in
Fig. 2. The errors in N-CSI and T-CSI-dir do not decrease
with an increase in iterations even though their cost functional

decreases, i.e. more iterations have no value in terms of a
change in RRE. T-CSI-cg and R-CSI show a gradual decrease
in RRE and show superior results compared to the other
methods. Figure 4b presents the RRE results for an SNR of
50, showing the noise robustness of especially R-CSI. This
noise-robustness can also be observed in the line plots from
Figs. S2i,j in the Supplementary Information, which show
similar results to the noiseless case shown in Figs. S2e,f.

C. Stopping criterion
Another parameter that influences CSI-EPT reconstructions

is the stopping criterion. Figure 4b additionally shows that,
in the case of noise, an increase in RRE can occur with
more iterations. The results of T-CSI-cg and R-CSI at 10,000
iterations of this noisy case are presented in Figs. 3e-f,k-
l and compared to the previously discussed 1000 iterations
with the same noise level (Figures 3c-d,i-j). The T-CSI-cg
reconstruction becomes significantly more noisy with more
iterations, while the same effect is not observed for the R-CSI
reconstruction. The differences with the noiseless case indicate
that overfitting to noise is substantial in T-CSI-cg, while this
is considerably less in R-CSI.

D. B1-mapping
A measured B1-map (B+

1 magnitude map) can be perturbed
by several inaccuracies, such as global offsets, low flip angle
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Fig. 5. Scaling dependency. Incorrect scaling of the B+
1 magnitude

map can result in inaccuracies in the CSI reconstruction. The heading
represent the scaling factor that is applied on B+

1 , from 20% underes-
timation (a,f) up to 20% overestimation (e,j). Results are for R-CSI after
10,000 iterations. Conductivity (a-e) and relative permittivity (f-j).

bias and other error-propagation mechanisms. The effect of
an incorrect global magnitude scaling is shown in Fig. 5
and the corresponding quantification values are presented in
Table S2 in the Supplementary Information. The data have
an SNR of 12, 26, 32 and 17 for the scaling of 0.8, 0.9, 1.1
and 1.2, respectively. Large under- and overestimations show
blurring in the reconstructed images, and the loss of detailed
tissue structures. With a 20% under- or overestimation, global
tissue structures remains visible, and with a 10% under-
or overestimation relatively small tissue structures remain
distinguishable. This shows that R-CSI reconstructions are
fairly insensitive to small under- and overestimations. Spatially
non-uniform noise, which would be more realistic as the data
quality in areas of low excitation flip are known to suffer from
increased B1 mapping inaccuracies, resulted in very similar
reconstruction quality and behavior (data not shown).

E. Coil loading

The incident field is influenced by coil-subject interactions,
called the loading effect, which is not explicitly accessible.
Different incident fields are therefore simulated to assess
the sensitivity of the R-CSI reconstruction to coil loading
variations. While providing the total field data obtained in the
Duke body model, the incident fields were generated using
either the Ella body model, a homogeneous sphere (radius
= 75 mm, σ = 0.58 S/m, εr = 43), an empty coil, as well
as the ideal coil model to determine the resulting error in
the reconstructed EPs. The incident fields, with the exception
of that of the empty coil, are scaled such that the mean
of their corresponding absolute transmit field in the center
region (3x3x3 voxels) matches the mean absolute transmit
field of the tuned coil loaded with the Duke model in the
same region. The reconstruction results are shown in Figs. 6a-
d,g-j. It shows that the effects of slight inter-subject loading
variations are not severe (Figs. 6a,g; RRE is 0.47 and 0.37
for the conductivity and permittivity, respectively). Loading
the coil with the sphere results in blurring and the RRE
increases to 0.52 and 0.42 for the conductivity and permittivity,
respectively (Figs. 6b,h). When the incident field from an
empty (unloaded) tuned coil is used, most of the detailed
anatomical structure is lost, and the reconstructed images are
very blurred (Figs. 6c,i). Additionally, the exact coil model is
typically not available. As an illustration, the reconstruction
when the incident field from an ideal version of the coil is
used is shown in Figs. 6d,j. The reconstruction results deviate
severely from the ground truth, failing to capture any structural
detail.

F. Transceive phase

In EPT, the transceive phase, the additive combination of the
transmit and the receive phase, is typically acquired. Figs. 6e,k
show the results when the transceive phase assumption (TPA),
estimating the transmit phase as half the transceive phase, is
applied on the 7 T tuned coil example. A similar reconstruction
quality as using the true transmit field phase can be observed
in the transversal conductivity slice, while several artifacts are
observed in the coronal slice. In the permittivity map more
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Fig. 6. Incident fields and TPA effects. R-CSI reconstructions on
noiseless data after 10,000 iterations when different incident fields are
used (a-d,g-j) and when the TPA is applied to the simulated transceive
phase (e-f,k-l). Using the incident field from the tuned coil model loaded
with Ella (a,g), loaded with a sphere with average expected EP values
(b,h), unloaded (c,i), and from the ideal coil loaded with the correct Duke
model (d,j). Using the estimated transmit phase through the TPA in the
case of the tuned coil setting (e,k) and in the case of the ideal coil setting
(f,l).

substantial artifacts are observed, but the general outline of
the tissue structure remains intact. Line plots are provided in
Figs. S2k,l in the Supplementary Information. Figs. 6f,l show
the results when the TPA is applied on the ideal coil setup as
introduced in Section III. Compared to the tuned coil model
case, a lower reconstruction quality in the center transversal
conductivity slice is observed. However, the coronal slice, as
well as the permittivity results show a higher accuracy in the
outer regions. The mean and standard deviation in the different
segmentation regions are of comparable quality (see Table S2),
but the RRE of the conductivity and permittivity maps are 0.53
and 0.40 for the tuned and 0.50 and 0.33 for the ideal setting,
respectively, indicating a generally higher accuracy in the ideal
coil setting.

G. Domain Truncation

In EM scattering formulations such as those underlying CSI-
EPT, one typically assumes that the object is surrounded by
air, i.e. that the object is fully enclosed within the object
domain. In practise, however, B+

1 data is acquired within a
region that is smaller than the entire subject. To evaluate the
influence of out-of-volume scattering on the reconstruction
quality, we truncated the reconstructed domain to different
sizes. The body model with a size as shown in Fig. 7a results
in a |B+

1 | field as shown in Fig. 7b. If the reconstructed domain
is smaller, i.e. truncated to e.g. 3.5, 7 or 10.5 cm, the |B+

1 |
fields from forward simulations correspond to those presented
in Figs. 7c-e, respectively. If the reconstruction domain is
chosen as large as the object, the assumption of a vanishing
object is satisfied, and an accurate reconstruction is achieved,
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Fig. 7. Domain truncation. Model of the tissue structure of the head
(a) and the |B+

1 | field for different sizes of the head model (b-e). The
ground truth absolute contrast function (f) and the corresponding |χ|
reconstructions when the field of (b) is truncated to different sizes (g-
j). The data is noiseless and reconstruction results are after 10,000
iterations with R-CSI. The horizontal lines indicate the position of the
end ring of the coil.

as shown by the absolute contrast function in Fig. 7g. However,
if the assumption is violated, by reducing the reconstruction
domain by e.g. 3.5, 7 or 10.5 cm, reconstructions as shown in
Figs. 7h-j are achieved. Quantification values can be found in
Table S2 and an additional line plot corresponding to Fig. 7j
can be found in Figs. S2m,n in the Supplementary Information.
The mean and standard deviation of the segmented regions as
well as the line plot indicate a relatively good (but smoothed)
reconstruction around the center region of the coil. The large
RRE values, that refer to the general quality of the whole
domain, indicate significant errors in other regions. Figure 7
shows that these substantial errors occur mostly around the
boundary region where the assumption of a vanishing object
is violated. Note that in the previous results the |B+

1 | fields
were taken equal to the one shown in Fig. 7e, corresponding to
the domain size 105-by-83-by-41 voxels, and thus neglecting
the effects from the region below the brain.

VI. DISCUSSION AND CONCLUSION

In order to get more insight in the origin and effect of some
of the most important error-sources on 3-D CSI-EPT that occur
in practice, different update approaches for the contrast source
as well as for the contrast function are compared, and the
effects of (suboptimal) initialization, noise, stopping criteria,
incident fields, B1-mapping, transceive phase and domain
size on the reconstructions are addressed. Furthermore, the
analytical implementation of different CSI-EPT strategies are
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summarized, and an overview is given that shows where the
computationally expensive steps occur in the iterative process.

N-CSI applies the conjugate gradient approach to a linear
problem, which gives fast results but is prone to reaching a
local minimum. T-CSI-dir applies a two-step update approach
to a non-linear problem which shows improved reconstruc-
tions: however, it is still prone to local minima and the direct
update approach of the contrast function does not necessarily
reduce errors [29]. Improvements can be obtained by updating
the contrast function more gradually in the iterative process
as done in T-CSI-cg. In R-CSI multiplicative total variation
regularization is employed and only minor differences are
observed in the noiseless case compared to T-CSI-cg. Note
that the RRE of the permittivity is generally lower compared
to that of the conductivity, which is probably due to the B+

1

being mainly influenced by displacements currents and not
conduction currents at 7 T.

When noise is present in the data, R-CSI outperforms the
other strategies. Applying multiplicative regularization to CSI-
EPT makes the method significantly more noise robust, while
the others already are noise robust compared to non-integral
equation-based EPT approaches [3], [5]. Note that the stopping
criterion is also a form of regularization. Throughout this
manuscript the stopping criterion is selected to be a maximum
amount of iterations: however, a predefined tolerance level for
the cost functional, or step size could be used as well. R-CSI
reduces the tendency of overfitting to noise at a high number
of iterations and therefore does not require fine-tuning of the
stopping criterion.

Spatially non-uniform noise distributions can occur due to
B1 mapping inaccuracies in areas of low excitation flip angle.
These noise distributions resulted in similar reconstruction
quality and behavior. Additionally, global scaling offsets in
B1-mapping can occur due to unknown RF losses along the
RF chain. Reconstructions with different offsets show that R-
CSI is not very sensitive to small under- or overestimations
of the B+

1 map. Offsets might be improved by calibrating
the map with a reference phantom and/or by using directional
couplers at the input of the coil. Note that due to the linearity
of Maxwell’s equations, the effect of inaccurate magnitude
scaling can be reflected as an incorrectly scaled incident
magnetic field strength, which therefore has similar effects on
the reconstruction.

CSI-EPT requires knowledge of the incident electric and
magnetic fields. Here the incident fields are derived from the
currents that run along the (loaded) coil and the shield in
XFdtd simulations. In this way, the loading effect is taken into
account, and the scattered fields created by the currents on the
shield are interpreted as known incident fields such that the
homogeneous Green’s function is applicable. In practice, an
accurate model of the coil setup is typically not available. In
experimental settings it is possible to approximate components
of the incident fields via measurements of phantoms with
known EP values [34]. However, reconstruction errors remain
due to inaccuracies in the incident field because of coil loading
variations, for example. Simulation results of the brain indicate
that as long as a comparable reference object is used for
determination of the incident fields, the remaining loading

differences do not introduce severe errors in the reconstruction
results. Since in the head model setting the incident field from
the tuned coil loaded with a homogeneous spherical phantom
did not show severe reconstruction differences compared to
using the true incident field, we expect that an accurate body
model would even suffice in regions with larger inter-subject
variations, such as the abdominal region.

In EPT, the absolute transmit phase map cannot be acquired
from a single-element coil, such as an ordinary birdcage
coil. In practice the transceive phase, the superposition of the
transmit and receive phase, is measured. For cylindrical objects
and at low frequencies, the transmit phase from the coil in
transmit mode is almost identical in structure to the receive
phase of the coil in receive mode. In those cases, the transceive
phase assumption can be used to estimate the transmit phase.
The TPA results at 7 T show a smaller RRE in the ideal coil
setting than in the tuned coil setting. This is as expected, since
the transmit and receive phase are more symmetrical in the
ideal setup. Our TPA results show a fairly good agreement
with the ground truth, even at the relatively high field strength
of 7 T. The results are expected to improve with lower field
strengths, which are more often used in practice. Additional
correction strategies can be applied, such as iterative updates
of the receive phase, which has been shown to work for two-
dimensional implementations of CSI-EPT [35]. Some CSI-
EPT implementations circumvent the transceive phase aspect
by reformulating CSI-EPT such that it uses amplitude data
only [36], [37]. Other possible solutions can be sought by
using transceiver arrays and formulating the problem in terms
of a relative phase, as employed in gradient-based EPT [16],
[38].

CSI-EPT implementations assume that the reconstruction
domain fully embeds the object that contributes to the scattered
B+

1 field to be able to make efficiently use of the FFT [20],
[23]. However, in practice, the region of acquisition is smaller
than the full coverage of the coil in order to prevent excessive
acquisition times. This results in a truncation of the recon-
structed domain, which introduces errors due to the violation
of the vanishing object assumption. These errors are most
pronounced at the region close to the truncation, therefore
the reconstructed domain should in practice always be larger
than the domain of interest. In practice one should attempt to
include all regions that contribute significantly to the B+

1 data
in the acquisition and reconstruction domain. An increased
domain leads to an increase in acquisition time as well as an
increase in reconstruction time. However, due to the linearity
of Maxwell’s equations, solutions can be sought by projecting
contributions of the scattered fields generated by an estimated
(fictional) object outside the reconstruction domain onto the
incident fields.

From the T-CSI-cg and R-CSI reconstructions a low electric
field artifact can be observed, which typically occurs around
the center of a volume RF coil [15], [23], [39]. Reconstruc-
tions at those regions might be improved by incorporating
complementary antenna settings or through active or passive
shimming [11], [39]. Note that the slices shown are through the
center of the birdcage coil, which show the largest sensitivity
to the low electric field issue, and other slices might therefore
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show better results.
Figure 1 shows the differences between the various updating

schemes of the discussed strategies and gives insight into the
computation costs of each step. The total computation time for
1000 iterations for the object domain with 105x83x43 voxels
are approximately 16, 37 and 44 minutes for N-CSI, T-CSI and
R-CSI, respectively. More details about the computationally
cost for different time consuming operators are presented in
Section S2 in the Supplementary Information. Note that a
significant computational speed-up can be achieved by making
use of a GPU [40].

The fact that R-CSI outperforms the other EPT strategies
discussed in this paper, without a substantial increase in
computation time, gives this approach great potential for
practical applications. To implement the method in practice,
the initialization, coil model and domain truncation should be
carefully taken care of, while noise level, stopping criterion,
B1-mapping, coil loading and transceive phase problem play
a more subordinate role in CSI-EPT.

APPENDICES

The steps in the contrast source inversion method are well
described in the literature [30], [41], [42], but discussed once
more in order to give a complete overview in the context of
3-D CSI-EPT.

APPENDIX I
DEFINITION OF THE INNER PRODUCT, ADJOINT

OPERATORS AND NORM

The inner product on D of two vector functions u and v is
defined as

〈u,v〉 = Re
∫

x∈D
u(x) · v(x) dV, (21)

where the overbar denotes complex conjugation. This inner
product induces a norm given by ||u|| = 〈u,u〉1/2.

The adjoints of the operators GB (see Eq. (11)) and GE (see
Eq. (14)) with respect to the above inner product are denoted
by G∗B and G∗E , respectively, and are given by

G∗B{ρ}(x) = −
ω

c20
∇̃
∫

x′∈D
G(x′ − x)ρ(x′) dV (22)

and

G∗E{r}(x) = (k20 +∇∇·)
∫

x′∈D
G(x′ − x)r(x′) dV. (23)

Note that the gradient operator in Eq. (22) acts on the integral,
and not on ρ as described in previous implementations [28],
[42], which saves two computationally expensive convolutions.

APPENDIX II
UPDATE STEPS

A. Update of Contrast Source

Keeping the contrast source fixed, the contrast source is
updated as

w[n] = w[n−1] + α[n]v[n], (24)

where the step length α is given by

α[n] =
− 1

2 〈g
[n]
w ,v[n]〉

ηB||GB
{
v[n]

}
||2 + η

[n]
E ||χ[n−1]GE

{
v[n]

}
− v[n]||2

,

(25)
with ηB = (||B+;sca

1 ||2)−1 and η[n]E = (||χ[n−1]Einc||2)−1. The
update direction v are taken to be the Polak-Ribière update
directions, given by

v[n] = g[n]
w +

〈g[n]
w , g

[n]
w − g

[n−1]
w 〉

||g[n−1]
w ||2

v[n−1]. (26)

Finally, the gradient of the functional with respect to w is
given by

g[n]
w = −2

[
ηBG∗B

{
ρ[n−1]

}

+η
[n]
E

(
r[n−1] − G∗E

{
χ[n−1] r[n−1]

}) ]
,

(27)

with χ the complex conjugate of the contrast function. Note
that this is the contrast source update that is used in T-
CSI and R-CSI. The updates for N-CSI are similar, and are
implemented by setting ηE to zero in the equations, saving a
considerable computational cost.

B. Update of Contrast Function

The contrast function can be determined by minimizing
Eq. (16). By assuming that the denominator of Eq. (16) is
independent of χ, the new contrast function can be found
by simply minimizing the nominator of the object functional,
leading to

χ[n] =

∑
kw

[n]
k E

[n]

k∑
k |E

[n]
k |2

, (28)

where the index k ranges over the set {x, y, z}.
However, due to the dependency of χ in the denominator

of Eq. (16), the updating scheme might not reduce errors and
it might be better to update the contrast function using the
conjugate-gradient update formula [29]

χ[n] = χ[n−1] + β[n]d[n], (29)

where the step length β is given by

β[n] =

−(aC −Ac) +
√
(aC −Ac)2 − 4(aB −Ab)(bC −Bc)

2(aB −Ab) ,

(30)

with

a = ||d[n]E[n]||2,
b = 〈χ[n−1]E[n] −w[n], d[n]E[n]〉,
c = ||χ[n−1]E[n] −w[n]||2,
A = ||d[n]Einc||2,
B = 〈χ[n−1]Einc, d[n]Einc〉,
C = ||χ[n−1]Einc||2, (31)
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and the update directions for χ are given by

d[n] = g[n]χ +
〈g[n]χ , g

[n]
χ − g[n−1]χ 〉
||g[n−1]χ ||2

d[n−1]. (32)

Finally, the gradient of the functional with respect to χ is given
by

g[n]χ = 2η
[n]
E

∑

k

(χ[n−1]E[n]
k −w

[n]
k )E

[n]

k , (33)

which is the gradient when ηE is again assumed to be inde-
pendent of χ.

C. Update of Contrast Function in Case of
Regularization

In the case of the multiplicative total variation factor, the
step length β is given by the real solution of the three roots
of the third order polynomial

aB+bA+2(aC+bB+cA)β+3(bC+cB)β2+4cCβ3, (34)

with

a = FB

{
w[n]

}
+ FE

{
w[n], χ[n−1]

}
,

b = 2η
[n]
E 〈χ[n−1]E[n] −w[n], d[n]〉,

c = η
[n]
E ||d[n]E[n]||2,

A = 1,

B = −2 〈∇ ·
[
(b[n])2∇χ[n−1]

]
, d[n]〉,

C = ||b[n]∇d[n]||2, (35)

and where the weighting function b is introduced, given by

b[n] =
1√

V
[
|∇χ[n−1]|2 + (δ[n])2

] , (36)

with δ the steering parameter from [31] (also given, in integral
notation, in Eq. (20))

(δ[n])2 =
||∇χ[n−1]||2

V
, (37)

and with V the volume of the object domain. The update
directions d are in the case of regularization given by

d[n] = g
[n]
R +

〈g[n]R , g
[n]
R − g

[n−1]
R 〉

||g[n−1]R ||2
d[n−1], (38)

with gR the gradient of the regularization functional FR with
respect to χ given by

g
[n]
R =

(
FB

{
w[n]

}
+ FE

{
w[n], χ[n−1]

})
g
[n]
TV + g[n]χ , (39)

and gTV the total variation gradient given by

g
[n]
TV = −2∇ ·

[
(b[n])2∇χ[n−1]

]
. (40)

Note that, in order to derive the gradient presented in Eq. (39),
b and ηE are assumed to be independent of χ.

APPENDIX III
ERROR AND NOISE QUANTIFICATION

A. Relative Residual Error

In order to quantify the results, the relative residual error
(RRE) or L2 error is introduced, given by

RREξ =
||ξ̂ − ξ||
||ξ|| =

√√√√√√√√

N∑
i=1

∣∣∣ξ̂i − ξi
∣∣∣
2

N∑
i=1

|ξi|2
, (41)

where ξ is the conductivity or permittivity, N is the total
number of voxels and the circumflex denotes the estimate of
the variable.

B. Signal-to-Noise Ratio

Gaussian noise was added to the real and imaginary parts of
the simulated complex B+

1 field. The SNR is defined as [43]

SNR|B̃+
1 | =

mean(|B̃+
1 |)

std(|B̃+
1 | − |B+

1 |)
, (42)

where B̃+
1 is the B+

1 field with added noise.
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SUPPLEMENTARY INFORMATION

S1. INITIALIZATION STATE

Figure S1 compares five R-CSI reconstructions of the same
dataset which are initialized differently. Simpler initializations
not discussed in the manuscript are backprojection [30] and
applying a homogeneous mask with average expected EP val-
ues with the incident electric field strength as an estimate for
the total one (to prevent a forward computation). Figures S1a-
b,f-g clearly shows a poor reconstruction. This is probably due
to the low reconstructed EP values with backprojection, and
due to the large difference in incident and total electric fields
for this high contrast function. Initializing with Helmholtz-
EPT (H-EPT) together with a forward computation also results
in a local minimum, see Figs. S1c,h, probably due to the
large inaccuracies in the derived electric field strength as an
effect of the large boundary errors that H-EPT gives. Since
the homogeneous guess with average expected values and a
forward computation results in regions with underestimations
in the conductivity, and overestimations in the permittivity,
another option would be to start with a homogeneous guess
with an overestimation of the average expected conductivity,
and an underestimation of the average expected permittivity,
together with a forward computation. Figures S1d,i shows the
results when this is applied using under- and overestimations
of approximately 30%. The results are of comparable quality
as without the under- and overestimations, with an RRE
of 0.45 and 0.33 for the conductivity and permittivity, re-
spectively, after 10,000 iterations. Additionally, improvements
can be expected when a rough segmentation together with a
forward computation is applied. More precisely, the model is
segmented into white matter (WM), gray matter (GM) and
cerebrospinal fluid (CSF), and small regions are removed from
those masks if they are not assigned to the correct tissue during
a segmentation process. The WM, GM and CSF are assigned
with EP values that are 10% below the true model values,
as if the object contains unexpected tissue values, while the
remaining tissue is assigned with its average value. Using this
segmented mask for R-CSI results in a reconstruction with
only minor differences, as shown in Figs. S1e,j. The RRE
after 10,000 iterations is 0.41 and 0.30 for the conductivity and
permittivity, respectively, which are comparable to using the
simpler homogeneous mask for R-CSI (see Fig. 4a). The RRE
for the different initializations are also presented in Table S2.
Other initializations, such as using more sophisticated EPT
methods, can also be considered, of course [44].

S2. COMPUTATIONAL COST

Table S1 shows the time duration and number of calls
of the most time consuming operators in CSI-EPT for the
implementation of the object domain with 105x83x43 voxels.
The convolution (conv) step, containing the FFT operations,
is the most computational expensive part of the algorithm.
This step is performed three times in the operators GE, G∗E , GB
and in previously described implementations three times in the
operator G∗B [28], [42]. However, by making use of the product
rule, the chain rule and Gauss’s theorem, the gradient operator
of G∗B can be taken outside the integral, as shown in Eq. (22),
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Fig. S1. Initialization dependency. R-CSI reconstructions after 10,000
iterations when initialized with backprojection (a,f), a homogeneous
mask with average expected EP values and the incident field (b,g),
with Helmholtz-based EPT EPs together with a forward simulation (c,h),
with a homogeneous mask with high and low EP values and a forward
simulation (d,i) and with a rough segmentation (see Section S1) with
expected EP values and a forward simulation. Conductivity (a-e) and
relative permittivity (f-j).

TABLE S1
THE TIME DURATION AND AMOUNT OF CALLS FOR THE DIFFERENT

OPERATORS IN EACH ITERATION. NOTE THAT THE TIME DURATION FOR

THE OPERATORS EXCLUDES THE CONVOLUTION (CONV) OPERATION.
‡THE OPERATOR IS USED ONCE AT THE VERY END OF THE METHOD.

conv GB G∗B GE G∗E
Time per call [s] 0.15 0.10 0.08 0.11 0.11
Calls per iteration

- N-CSI 4 1 1 0‡ 0
- T-CSI 10 1 1 1 1
- R-CSI 10 1 1 1 1

eliminating two out of a total of 12 convolution operations,
saving a substantial computation duration in every iteration.
The total time that it takes to compute 1000 iterations are
approximately 16, 37 and 44 minutes for N-CSI, T-CSI and
R-CSI, respectively. The presented times are for an Intel i7-
6700 CPU with 32 GB memory operating on Windows 10
with Matlab 2019b.
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TABLE S2
MEAN AND STANDARD DEVIATION OF THE WHITE MATTER (WM), GRAY MATTER (GM) AND CEREBROSPINAL FLUID (CSF) AND THE RELATIVE

RESIDUAL ERROR (RRE) OF THE WHOLE DOMAIN FOR THE RECONSTRUCTION RESULTS SHOWN IN EACH FIGURE. †THE RRE IS DETERMINED ON

THE SMALL DOMAIN (105X83X43 VOXELS). ADDITIONALLY THE SIGNAL-TO-NOISE RATIO (SNR) OF THE USED TRANSMIT FIELD DATASET IS

PRESENTED.

Conductivity (σ) Relative permittivity (εr) SNR

WM GM CSF RRE WM GM CSF RRE

True 0.41 0.69 2.22 0 43.78 60.02 72.73 0 -

Figure 2

b 0.27±0.20 0.21±0.26 0.14±0.26 0.91 g 30.50±12.72 22.43±16.23 6.21±17.02 0.80 ∞
c 0.37±0.47 0.42±0.78 0.68±1.23 1.01 h 35.56±30.57 34.52±46.35 32.41±70.11 0.94 ∞
d 0.45±0.11 0.72±0.22 1.37±0.48 0.46 i 45.70± 6.87 57.67±11.02 69.83±19.35 0.34 ∞
e 0.46±0.08 0.70±0.18 1.38±0.45 0.42 j 44.93± 4.84 57.22± 7.80 68.25±13.59 0.31 ∞

Figure 3

a 0.49±0.20 0.69±0.26 1.04±0.42 0.56 g 47.67±11.96 54.87±14.84 63.79±21.29 0.41 75
b 0.51±0.11 0.65±0.19 1.03±0.39 0.52 h 47.43± 5.52 53.88± 8.59 61.86±15.19 0.36 75
c 0.49±0.25 0.69±0.30 1.05±0.43 0.58 i 47.46±14.83 54.76±17.04 63.81±22.69 0.44 50
d 0.52±0.10 0.64±0.18 0.98±0.37 0.54 j 48.18± 4.95 53.54± 7.98 60.85±14.04 0.37 50
e 0.42±0.60 0.65±0.66 1.23±0.76 0.81 k 39.47±39.33 50.30±41.41 65.67±43.90 0.79 50
f 0.51±0.10 0.64±0.17 1.02±0.37 0.55 l 48.37± 5.79 54.32± 7.48 61.63±12.34 0.43 50

Figure 5

a 0.52±0.09 0.64±0.16 0.95±0.38 0.60 f 49.01± 4.86 54.10± 7.87 59.96±12.82 0.42 12
b 0.48±0.09 0.67±0.17 1.15±0.42 0.53 g 46.97± 4.85 56.32± 7.57 65.57±12.34 0.39 26
c 0.46±0.08 0.70±0.18 1.38±0.45 0.42 h 44.93± 4.84 57.22± 7.80 68.25±13.59 0.31 ∞
d 0.50±0.11 0.67±0.20 1.18±0.44 0.53 i 45.57± 6.27 54.05± 9.09 64.10±16.34 0.38 32
e 0.51±0.11 0.65±0.19 1.02±0.41 0.59 j 46.87± 5.93 53.18± 8.98 61.87±16.07 0.41 17

Figure 6

a 0.50±0.11 0.70±0.19 1.27±0.44 0.47 g 46.09± 5.55 55.75± 8.67 65.54±15.03 0.37 ∞
b 0.53±0.11 0.68±0.19 1.11±0.40 0.52 h 47.75± 5.94 54.21± 9.08 62.23±15.65 0.42 ∞
c 0.55±0.10 0.59±0.16 0.76±0.28 0.64 i 47.72± 5.36 49.88± 7.15 53.06±12.64 0.48 ∞
d 0.54±0.17 0.42±0.22 0.33±0.27 0.80 j 43.15± 9.70 36.83±15.98 27.11±22.53 0.65 ∞
e 0.49±0.16 0.67±0.25 1.13±0.48 0.53 k 45.51± 8.88 53.52±13.04 63.28±19.60 0.40 ∞
f 0.47±0.13 0.67±0.19 1.12±0.42 0.50 l 47.33± 7.65 56.10±10.37 63.67±15.19 0.33 ∞

Figure 7†
g 0.44±0.07 0.69±0.17 1.43±0.45 0.40 g 45.52± 4.54 59.14± 8.38 70.98±13.20 0.30 ∞
h 0.46±0.08 0.65±0.19 1.16±0.44 0.48 h 47.27± 4.95 57.19± 8.42 65.86±15.31 0.34 ∞
i 0.47±0.09 0.64±0.20 1.12±0.46 0.53 i 47.60± 5.45 57.02± 9.23 66.27±19.64 0.44 ∞
j 0.51±0.11 0.65±0.23 1.04±0.72 0.73 j 49.41± 7.21 56.90±13.78 65.31±40.55 0.68 ∞

Figure S1

a 0.10±0.08 0.07±0.09 0.11±0.11 0.95 f 0.42± 1.56 0.71± 2.18 2.12± 2.78 0.99 ∞
b 0.09±0.10 0.03±0.10 0.04±0.12 0.99 g 8.82± 4.27 7.10± 5.20 9.30± 6.49 0.90 ∞
c -0.11±0.15 -0.06±0.18 -0.16±0.23 1.08 h 1.07± 5.72 0.37± 7.63 2.33±10.36 2.83 ∞
d 0.48±0.10 0.69±0.20 1.35±0.48 0.45 i 43.62± 5.83 55.66± 9.01 66.51±18.70 0.33 ∞
e 0.46±0.08 0.70±0.17 1.43±0.50 0.41 j 45.38± 4.73 57.77± 7.59 66.46±14.31 0.30 ∞
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Fig. S2. Profile plots. Line position w.r.t. the true model (a,b). Line
profiles of the reconstructed maps as depicted in Figs. 2d,i (c,d),
Figs. 2e,j (e,f) and (g,h), Figs. 3f,l (i,j), Figs. 6e,k (k,l) and Figs. 7e,j
(m,n). Black lines represent the true model values, the blue and red
lines in (c–n) are the reconstructions along the blue and red lines in
(a,b), respectively. The red line is positioned directly below the blue line.
The x-axes correspond to the lines in (a,b), while the y-axes correspond
to the conductivity [S/m] (left column) or the relative permittivity (right
column).


