394 research outputs found

    The Effect of the Directed Case Study Method on the Critical Thinking Skills of High School Students

    Get PDF
    Many teachers struggle to find teaching methods that meet educational goals effectively. One common instructional goal is to emphasize critical thinking. Generally, critical thinking refers to the way individuals approach problems, apply information in new ways, and understand multiple sides to an issue (Willingham, 2007). This quasi-experimental study investigated the effect of the directed case study method on the critical thinking skills of high school students. The directed case study is an example of case-based teaching, a method that features a relevant story and incorporates objective questions. The study was conducted in a large, semi-urban high school, with 79 ninth and 10th grade general biology students. Students were divided into a control group (n = 17) and a case study group (n = 62). Both groups were given a critical thinking testing instrument at the start of the study, a second version of the instrument at the mid-point of the study, and a third version of the instrument at the end of the study. The scores were analyzed using repeated measures analysis of variance with post-hoc tests. The design of this study offered an alternative to traditional pre and post-tests that are common to education research. In the results of this study, a statistically significant difference was shown between student scores on their first, second, and third attempts at the critical thinking test. There was a statistically significant interaction effect. However, the mean scores of the case study group remained consistent while the scores of the control group decreased over time. Based on these findings, the author suggests that the directed case study method may present a viable, active teaching methodology, but more research is needed

    A Method to Distinguish Quiescent and Dusty Star-forming Galaxies with Machine Learning

    Get PDF
    Large photometric surveys provide a rich source of observations of quiescent galaxies, including a surprisingly large population at z > 1. However, identifying large, but clean, samples of quiescent galaxies has proven difficult because of their near-degeneracy with interlopers such as dusty, star-forming galaxies. We describe a new technique for selecting quiescent galaxies based upon t-distributed stochastic neighbor embedding (t-SNE), an unsupervised machine-learning algorithm for dimensionality reduction. This t-SNE selection provides an improvement both over UVJ, removing interlopers that otherwise would pass color selection, and over photometric template fitting, more strongly toward high redshift. Due to the similarity between the colors of high- and low-redshift quiescent galaxies, under our assumptions, t-SNE outperforms template fitting in 63% of trials at redshifts where a large training sample already exists. It also may be able to select quiescent galaxies more efficiently at higher redshifts than the training sample

    Classifying retinopathy of prematurity

    Get PDF
    Knowing how to classify retinopathy of prematurity is essential as it provides information on the prognosis and guides decision making about screening and treatment

    How does ROP develop?

    Get PDF
    Retinopathy of prematurity can develop when babies are born before their retinal blood vessels are fully formed

    A Structural Basis for Cellular Uptake of GST-Fold Proteins

    No full text
    It has recently emerged that glutathione transferase enzymes (GSTs) and other structurally related molecules can be translocated from the external medium into many different cell types. In this study we aim to explore in detail, the structural features that govern cell translocation and by dissecting the human GST enzyme GSTM2-2 we quantatively demonstrate that the α-helical C-terminal domain (GST-C) is responsible for this property. Attempts to further examine the constituent helices within GST-C resulted in a reduction in cell translocation efficiency, indicating that the intrinsic GST-C domain structure is necessary for maximal cell translocation capacity. In particular, it was noted that the α-6 helix of GST-C plays a stabilising role in the fold of this domain. By destabilising the conformation of GST-C, an increase in cell translocation efficiency of up to ∼2-fold was observed. The structural stability profiles of these protein constructs have been investigated by circular dichroism and differential scanning fluorimetry measurements and found to impact upon their cell translocation efficiency. These experiments suggest that the globular, helical domain in the 'GST-fold' structural motif plays a role in influencing cellular uptake, and that changes that affect the conformational stability of GST-C can significantly influence cell translocation efficiency.This work was supported by Grant DP0558315 Australian Research Council (http://www.arc.gov.au/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Supernovae in Low-Redshift Galaxy Clusters: Observations by the Wise Observatory Optical Transient Search (WOOTS)

    Full text link
    We describe the Wise Observatory Optical Transient Search (WOOTS), a survey for supernovae (SNe) and other variable and transient objects in the fields of redshift 0.06-0.2 Abell galaxy clusters. We present the survey design and data-analysis procedures, and our object detection and follow-up strategies. We have obtained follow-up spectroscopy for all viable SN candidates, and present the resulting SN sample here. Out of the 12 SNe we have discovered, seven are associated with our target clusters while five are foreground or background field events. All but one of the SNe (a foreground field event) are Type Ia SNe. Our non-cluster SN sample is uniquely complete, since all SN candidates have been either spectroscopically confirmed or ruled out. This allows us to estimate that flux-limited surveys similar to WOOTS would be dominated (~80%) by SNe Ia. Our spectroscopic follow-up observations also elucidate the difficulty in distinguishing active galactic nuclei from SNe. In separate papers we use the WOOTS sample to derive the SN rate in clusters for this redshift range, and to measure the fraction of intergalactic cluster SNe. We also briefly report here on some quasars and asteroids discovered by WOOTS.Comment: Submitted to ApJ. Comments welcom

    Rich Socio-Cognitive Agents for Immersive Training Environments: Case of NonKin Village

    Get PDF
    Demand is on the rise for scientifically based human-behavior models that can be quickly customized and inserted into immersive training environments to recreate a given society or culture. At the same time, there are no readily available science model-driven environments for this purpose (see survey in Sect. 2). In researching how to overcome this obstacle, we have created rich (complex) socio-cognitive agents that include a large number of social science models (cognitive, sociologic, economic, political, etc) needed to enhance the realism of immersive, artificial agent societies. We describe current efforts to apply model-driven development concepts and how to permit other models to be plugged in should a developer prefer them instead. The current, default library of behavioral models is a metamodel, or authoring language, capable of generating immersive social worlds. Section 3 explores the specific metamodels currently in this library (cognitive, socio-political, economic, conversational, etc.) and Sect. 4 illustrates them with an implementation that results in a virtual Afghan village as a platform-independent model. This is instantiated into a server that then works across a bridge to control the agents in an immersive, platform-specific 3D gameworld (client). Section 4 also provides examples of interacting in the resulting gameworld and some of the training a player receives. We end with lessons learned and next steps for improving both the process and the gameworld. The seeming paradox of this research is that as agent complexity increases, the easier it becomes for the agents to explain their world, their dilemmas, and their social networks to a player or trainee

    Escape Times in Fluctuating Metastable Potential and Acceleration of Diffusion in Periodic Fluctuating Potentials

    Full text link
    The problems of escape from metastable state in randomly flipping potential and of diffusion in fast fluctuating periodic potentials are considered. For the overdamped Brownian particle moving in a piecewise linear dichotomously fluctuating metastable potential we obtain the mean first-passage time (MFPT) as a function of the potential parameters, the noise intensity and the mean rate of switchings of the dichotomous noise. We find noise enhanced stability (NES) phenomenon in the system investigated and the parameter region of the fluctuating potential where the effect can be observed. For the diffusion of the overdamped Brownian particle in a fast fluctuating symmetric periodic potential we obtain that the effective diffusion coefficient depends on the mean first-passage time, as discovered for fixed periodic potential. The effective diffusion coefficients for sawtooth, sinusoidal and piecewise parabolic potentials are calculated in closed analytical form.Comment: 10 pages, 2 figures. In press in Physica A, 2004. In press in Physica A, 200

    Evidence of Fragmenting Dust Particles from Near-Simultaneous Optical and Near-IR Photometry and Polarimetry of Comet 73P/Schwassmann-Wachmann 3

    Get PDF
    We report imaging polarimetry of segments B and C of the Jupiter-family Comet 73P/Schwassmann-Wachmann 3 in the I and H bandpasses at solar phase angles of approximately 35 and 85deg. The level of polarization was typical for active comets, but larger than expected for a Jupiter-family comet. The polarimetric color was slightly red (dP/dL = +1.2 +/- 0.4) at a phase angle of ~ 35deg and either neutral or slightly blue at a phase angle of ~ 85deg. Observations during the closest approach from 2006 May 11-13 achieved a resolution of 35 km at the nucleus. Both segments clearly depart from a 1/rho surface brightness for the first 50 - 200 km from the nucleus. Simulations of radiation driven dust dynamics can reproduce some of the observed coma morphology, but only with a wide distribution of initial dust velocities (at least a factor of 10) for a given grain radius. Grain aggregate breakup and fragmentation are able to reproduce the observed profile perpendicular to the Sun-Comet axis, but fit the observations less well along this axis (into the tail). The required fragmentation is significant, with a reduction in the mean grain aggregate size by about a factor of 10. A combination of the two processes could possibly explain the surface brightness profile of the comet.Comment: 40 pages including 11 figure
    corecore