75 research outputs found

    Appropriate models for the management of infectious diseases

    Get PDF
    Background Mathematical models have become invaluable management tools for epidemiologists, both shedding light on the mechanisms underlying observed dynamics as well as making quantitative predictions on the effectiveness of different control measures. Here, we explain how substantial biases are introduced by two important, yet largely ignored, assumptions at the core of the vast majority of such models. Methods and Findings First, we use analytical methods to show that (i) ignoring the latent period or (ii) making the common assumption of exponentially distributed latent and infectious periods (when including the latent period) always results in underestimating the basic reproductive ratio of an infection from outbreak data. We then proceed to illustrate these points by fitting epidemic models to data from an influenza outbreak. Finally, we document how such unrealistic a priori assumptions concerning model structure give rise to systematically overoptimistic predictions on the outcome of potential management options. Conclusion This work aims to highlight that, when developing models for public health use, we need to pay careful attention to the intrinsic assumptions embedded within classical frameworks

    Incomplete Protection against Dengue Virus Type 2 Re-infection in Peru

    Get PDF
    © 2016 Public Library of Science. All Rights Reserved. Background: Nearly half of the world’s population is at risk for dengue, yet no licensed vaccine or anti-viral drug is currently available. Dengue is caused by any of four dengue virus serotypes (DENV-1 through DENV-4), and infection by a DENV serotype is assumed to provide life-long protection against re-infection by that serotype. We investigated the validity of this fundamental assumption during a large dengue epidemic caused by DENV-2 in Iquitos, Peru, in 2010–2011, 15 years after the first outbreak of DENV-2 in the region. Methodology/Principal Findings: We estimated the age-dependent prevalence of serotype-specific DENV antibodies from longitudinal cohort studies conducted between 1993 and 2010. During the 2010–2011 epidemic, active dengue cases were identified through active community- and clinic-based febrile surveillance studies, and acute inapparent DENV infections were identified through contact tracing studies. Based on the age-specific prevalence of DENV-2 neutralizing antibodies, the age distribution of DENV-2 cases was markedly older than expected. Homologous protection was estimated at 35.1% (95% confidence interval: 0%–65.2%). At the individual level, pre-existing DENV-2 antibodies were associated with an incomplete reduction in the frequency of symptoms. Among dengue cases, 43% (26/66) exhibited elevated DENV-2 neutralizing antibody titers for years prior to infection, compared with 76% (13/17) of inapparent infections (age-adjusted odds ratio: 4.2; 95% confidence interval: 1.1–17.7). Conclusions/Significance: Our data indicate that protection from homologous DENV re-infection may be incomplete in some circumstances, which provides context for the limited vaccine efficacy against DENV-2 in recent trials. Further studies are warranted to confirm this phenomenon and to evaluate the potential role of incomplete homologous protection in DENV transmission dynamics

    Evolutionary consequences of feedbacks between within-host competition and disease control

    Get PDF
    Lay Summary: Competition often occurs among diverse parasites within a single host, but control efforts could change its strength. We examined how the interplay between competition and control could shape the evolution of parasite traits like drug resistance and disease severity

    Estimating the Duration of Pertussis Immunity Using Epidemiological Signatures

    Get PDF
    Case notifications of pertussis have shown an increase in a number of countries with high rates of routine pediatric immunization. This has led to significant public health concerns over a possible pertussis re-emergence. A leading proposed explanation for the observed increase in incidence is the loss of immunity to pertussis, which is known to occur after both natural infection and vaccination. Little is known, however, about the typical duration of immunity and its epidemiological implications. Here, we analyze a simple mathematical model, exploring specifically the inter-epidemic period and fade-out frequency. These predictions are then contrasted with detailed incidence data for England and Wales. We find model output to be most sensitive to assumptions concerning naturally acquired immunity, which allows us to estimate the average duration of immunity. Our results support a period of natural immunity that is, on average, long-lasting (at least 30 years) but inherently variable

    Persistence of Pathogens with Short Infectious Periods in Seasonal Tick Populations: The Relative Importance of Three Transmission Routes

    Get PDF
    BACKGROUND: The flaviviruses causing tick-borne encephalitis (TBE) persist at low but consistent levels in tick populations, despite short infectious periods in their mammalian hosts and transmission periods constrained by distinctly seasonal tick life cycles. In addition to systemic and vertical transmission, cofeeding transmission has been proposed as an important route for the persistence of TBE-causing viruses. Because cofeeding transmission requires ticks to feed simultaneously, the timing of tick activity may be critical to pathogen persistence. Existing models of tick-borne diseases do not incorporate all transmission routes and tick seasonality. Our aim is to evaluate the influence of seasonality on the relative importance of different transmission routes by using a comprehensive mathematical model. METHODOLOGY/PRINCIPAL FINDINGS: We developed a stage-structured population model that includes tick seasonality and evaluated the relative importance of the transmission routes for pathogens with short infectious periods, in particular Powassan virus (POWV) and the related "deer tick virus," emergent encephalitis-causing flaviviruses in North America. We used the next generation matrix method to calculate the basic reproductive ratio and performed elasticity analyses. We confirmed that cofeeding transmission is critically important for such pathogens to persist in seasonal tick populations over the reasonable range of parameter values. At higher but still plausible rates of vertical transmission, our model suggests that vertical transmission can strongly enhance pathogen prevalence when it operates in combination with cofeeding transmission. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that the consistent prevalence of POWV observed in tick populations could be maintained by a combination of low vertical, intermediate cofeeding and high systemic transmission rates. When vertical transmission is weak, nymphal ticks support integral parts of the transmission cycle that are critical for maintaining the pathogen. We also extended the model to pathogens that cause chronic infections in hosts and found that cofeeding transmission could contribute to elevating prevalence even in these systems. Therefore, the common assumption that cofeeding transmission is not relevant in models of chronic host infection, such as Lyme disease, could lead to underestimating pathogen prevalence
    corecore