54 research outputs found

    32 Bezpośrednie wstrzykiwanie rTNFα do guzów nowotworowych wątroby

    Get PDF
    W około 70% badań sekcyjnych stwierdza się obecność guzów nowotworowych w wątrobie i są to głównie guzy przerzutowe. rTNFα jest cytokiną wykazującą cytotoksyczne działanie na komórki nowotworowe i jest stosowany w terapii eksperymentalnej nowotworów.W okresie od grudnia 1993 do stycznia 1995 r. rTNFα wstrzyknięto doguzowo z powodu zmian ogniskowych w wątrobie u 18 chorych (11 kobiet, 7 mężczyzn), badaniu klinicznemu zostali poddani chorzy z rozpoznaniami: pierwotny rak wątroby – 2 chorych, rak jelita grubego – 12 chorych, rak pęcherzyka żółciowego – 1 chorych, czerniak złośliwy – 1 chory, rak sutka – 1 chory, rak trzustki – 1 chory. rTNFα wstrzykiwano bezpośrednio do ognisk nowotworowych w wątrobie pod kontrolą ultrasonograficzną, w dawce od 100 do 500 μg (śr. 300 μg).U wszystkich chorych oceniano parametry kliniczne tj. temperaturę, czynność serca, ciśnienie tętnicze oraz laboratoryjne (biochemiczne i morfologiczne z krwi obwodowej). Dodatkowo u 6 chorych a rakiem jelita grubego, którzy otrzymywali 500μg rTNFα w surowicy oceniano kinetykę zmian stężenia rTNFα. Zmiany w obrębie ognisk nowotworowych oceniano w badaniu ultrasonograficznym.W badanej grupie chorych stwierdzono, że u 1 chorego z pierwotnym rakiem wątroby nie uzyskano zmiany obrazu ognisk patologicznych pod wpływem podawania rTNFα. U pozostałych 17 chorych stwierdzono zmiany w obrębie guzów obstrzykniętych tą cytokiną o charakterze hiperechogenicznym. W okresie od kilku do 72 godzin od chwili wstrzyknięcia stwierdzono normalizację parametrów klinicznych, biochemicznych i morfologicznych krwi. Największe stężenie rTNFα w surowicy krwi obwodowej stwierdzono w 1 godzinę od chwili wstrzyknięcia rTNFα −133,96 +/−291,40 pg/ml (ta wartość przed leczeniem wynosiła 279,72+/−23,20 pg/ml). Czas przeżycia chorych od chwili doguzowego wstrzyknięcia rTNFα wynosił od4 do 43 tygodni (mediana 18,8 tygodni)

    Evaluating standards of care in psoriatic arthritis of the QUANTUM project (qualitative initiative to improve outcomes): results of an accreditation project in Spain

    Get PDF
    In Spain, the QUANTUM project has been promoted to reduce variability in clinical practice and improve the care and quality of life of people with psoriatic arthritis (PsA) by accrediting PsA units throughout the Spanish national health system. To present the results of this approach which sought to ensure an optimum level of quality for patients with PsA. Descriptive analysis of the self-assessments that the PsA units have carried out assessing their degree of compliance with the quality standards established in the QUANTUM project grouped into four blocks: shortening time to diagnosis; optimizing disease management; improving multidisciplinary collaboration; and improving patient monitoring. A total of 41 PsA units were self-evaluated. They met 64.1% of the defined quality standards. Optimize disease management obtained a higher level of standards compliance (72%) and improve multidisciplinary collaboration the lesser (63.9%). Accessibility to the treatments available for PsA in all hospitals was guaranteed (100%). Appropriate diagnostic equipment is available (97.6%). Compliance with specific quality standards leads to detect actions that should be implemented: quality of life assessment (9.8%), locomotor system assessment (12.2%), physical examination data record (14.6%), periodic cardiovascular risk assessment (17.1%). The QUANTUM project results make it possible to visualise how to care for patients with PsA is being developed in Spain. Problems identified in recent multinational reports are also identified in Spain

    The HITRAN2016 molecular spectroscopic database

    Get PDF
    This paper describes the contents of the 2016 edition of the HITRAN molecular spectroscopic compilation. The new edition replaces the previous HITRAN edition of 2012 and its updates during the intervening years. The HITRAN molecular absorption compilation is composed of five major components: the traditional line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, infrared absorption cross-sections for molecules not yet amenable to representation in a line-by-line form, collision-induced absorption data, aerosol indices of refraction, and general tables such as partition sums that apply globally to the data. The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity. Moreover, molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth. Of considerable note, experimental IR cross-sections for almost 300 additional molecules important in different areas of atmospheric science have been added to the database. The compilation can be accessed through www.hitran.org. Most of the HITRAN data have now been cast into an underlying relational database structure that offers many advantages over the long-standing sequential text-based structure. The new structure empowers the user in many ways. It enables the incorporation of an extended set of fundamental parameters per transition, sophisticated line-shape formalisms, easy user-defined output formats, and very convenient searching, filtering, and plotting of data. A powerful application programming interface making use of structured query language (SQL) features for higher-level applications of HITRAN is also provided

    The HITRAN2020 Molecular Spectroscopic Database

    Get PDF
    The HITRAN database is a compilation of molecular spectroscopic parameters. It was established in the early 1970s and is used by various computer codes to predict and simulate the transmission and emission of light in gaseous media (with an emphasis on terrestrial and planetary atmospheres). The HITRAN compilation is composed of five major components: the line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, experimental infrared absorption cross-sections (for molecules where it is not yet feasible for representation in a line-by-line form), collision-induced absorption data, aerosol indices of refraction, and general tables (including partition sums) that apply globally to the data. This paper describes the contents of the 2020 quadrennial edition of HITRAN. The HITRAN2020 edition takes advantage of recent experimental and theoretical data that were meticulously validated, in particular, against laboratory and atmospheric spectra. The new edition replaces the previous HITRAN edition of 2016 (including its updates during the intervening years). All five components of HITRAN have undergone major updates. In particular, the extent of the updates in the HITRAN2020 edition range from updating a few lines of specific molecules to complete replacements of the lists, and also the introduction of additional isotopologues and new (to HITRAN) molecules: SO, CH3F, GeH4, CS2, CH3I and NF3. Many new vibrational bands were added, extending the spectral coverage and completeness of the line lists. Also, the accuracy of the parameters for major atmospheric absorbers has been increased substantially, often featuring sub-percent uncertainties. Broadening parameters associated with the ambient pressure of water vapor were introduced to HITRAN for the first time and are now available for several molecules. The HITRAN2020 edition continues to take advantage of the relational structure and efficient interface available at www.hitran.org and the HITRAN Application Programming Interface (HAPI). The functionality of both tools has been extended for the new edition

    The HITRAN2020 molecular spectroscopic database

    Get PDF
    The HITRAN database is a compilation of molecular spectroscopic parameters. It was established in the early 1970s and is used by various computer codes to predict and simulate the transmission and emission of light in gaseous media (with an emphasis on terrestrial and planetary atmospheres). The HITRAN compilation is composed of five major components: the line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, experimental infrared absorption cross-sections (for molecules where it is not yet feasible for representation in a line-by-line form), collision-induced absorption data, aerosol indices of refraction, and general tables (including partition sums) that apply globally to the data. This paper describes the contents of the 2020 quadrennial edition of HITRAN. The HITRAN2020 edition takes advantage of recent experimental and theoretical data that were meticulously validated, in particular, against laboratory and atmospheric spectra. The new edition replaces the previous HITRAN edition of 2016 (including its updates during the intervening years). All five components of HITRAN have undergone major updates. In particular, the extent of the updates in the HITRAN2020 edition range from updating a few lines of specific molecules to complete replacements of the lists, and also the introduction of additional isotopologues and new (to HITRAN) molecules: SO, CH3F, GeH4, CS2, CH3I and NF3. Many new vibrational bands were added, extending the spectral coverage and completeness of the line lists. Also, the accuracy of the parameters for major atmospheric absorbers has been increased substantially, often featuring sub-percent uncertainties. Broadening parameters associated with the ambient pressure of water vapor were introduced to HITRAN for the first time and are now available for several molecules. The HITRAN2020 edition continues to take advantage of the relational structure and efficient interface available at www.hitran.org and the HITRAN Application Programming Interface (HAPI). The functionality of both tools has been extended for the new edition

    Determination of fractional composition for agri-cultural biofuels containing the CSME bio-component

    No full text
    W pracy zaprezentowano wyniki badań dotyczących określenia składu frakcyjnego biopaliw, zawierających biokomponent CSME oraz oleju napędowego. Badania przeprowadzono zgodnie z wymogami normy ASTMD 1160 przy użyciu mini destylarki firmy Grabner Instruments. Badania pokazały, że zarówno początek destylacji jak i jej przebieg zależy od ilości CSME w oleju napędowym. Spośród badanych biopaliw tylko B20 CSME może sprostać wymogom dla standardowego oleju napędowego stanowiącym, że 95% V/V paliwa musi odparować do temperatury 360°C.The paper presents results of the research concerning determination of fractional composition for biofuels containing the CSME bio-component and diesel oil. The tests were carried out according to the requirements specified in the ASTMD 1160, using a mini distiller manufactured by Grabner Instruments. The tests have shown that both distillation start and progress depend on the CSME volume contained in diesel oil. Among all examined biofuels, only the B20 CSME may meet requirements of the standard applicable for standard diesel oil, which specifies that 95% v/v of fuel must evaporate up to the temperature of 360°C

    Determination of temperature impact on dynamic viscosity of plant biofuels

    No full text
    W pracy przedstawiono wyniki badań wpływu temperatury na lepkość dynamiczną biopaliw typu Biodiesel RME i SME oraz dla porównania oleju napędowego. Badania stanowiskowe przeprowadzono na reometrze RHEOLABQC niemieckiej firmy Anton Paar GmbH. W celu określenia wpływu temperatury na lepkość dynamiczną reometr został wyposażony w wannę termostatyczną firmy GRANT. Dla badanych paliw wyznaczono zmienność lepkości w zakresie temperatur od -10 do 20°C. W temperaturze -10°C najwyższą lepkością wynoszącą 42 mPaźs charakteryzował się RME, nie co niższą wartość lepkości uzyskano dla SME - 36 mPaźs, natomiast najniższą lepkością cechuje się olej napędowy - 10,3 mPaźs. Wraz ze wzrostem temperatury lekkość malała, przy czym dla RME i SME gwałtownie w zakresie temperatur od -10 do -6°C. Dla pozostałego zakresu temperatur lepkość maleje praktycznie liniowo wraz ze wzrostem temperatur. W temperaturze 20°C lepkość przyjmowała następujące wartości około 13 mPaźs dla RME oraz SME i odpowiednio 8,4 mPaźs dla oleju napędowego.The paper presents results of the research concerning temperature impact on dynamic viscosity of Biodiesel RME and SME type biofuels, and diesel oil for comparison purposes. Tests at the stand were performed using RHEOLABQC rheometer from German manufacturer Anton Paar GmbH. In order to determine temperature impact on dynamic viscosity, the rheometer was equipped with GRANT thermostatic tank. Viscosity variability was determined for the examined fuels within temperature range from -10 to 20°C. At the temperature of -10°C, the RME was characterised by highest viscosity value of 42 mPaźs. Slightly lower viscosity value was obtained for the SME - 36 mPaźs, whereas lowest viscosity was characteristic for diesel oil - 10.3 mPaźs. Viscosity value was dropping with increasing temperature, while for the RME and SME the drop was rapid within temperature range from -10 to -6°C. For the remaining temperature range viscosity drop with temperature rise was in practice linear. At the temperature of 20°C viscosity had the following values: approximately 13 mPaźs for the RME and SME, and respectively 8.4 mPaźs for diesel oil

    Using gas chromatography to evaluate the RME and CSME agricultural biofuels as regards content of fatty acid esters

    No full text
    W pracy zaprezentowano wyniki badań dotyczących oceny biopaliw rolniczych RME i CSME ze względu na układ estrów kwasów tłuszczowych. Badania wykazały, że biopaliwa RME nie są produkowane z najkorzystniejszych z punktu widzenia paliw odmian rzepaku. Z tego powodu charakteryzują się niższą wartością opałową oraz dodatkowo wymagają użycia większej ilości antyutleniaczy. Biopaliwo CSME uzyskane z oleju lnianki różni się znacznie ze względu na skład kwasów tłuszczowych od RME. Zawiera więcej kwasu linolowego, a mniej oleinowego. Taka sytuacja powoduje, że Biodiesel CSME nie spełnia wymagań normy EN 14214, co z kolei ogranicza jego dystrybucję w stacjach paliw.The paper presents results of the research concerning evaluation of the RME and CSME agricultural biofuels as regards content of fatty acid esters. The research has proven that the RME biofuels production is not based on the most favourable rape varieties from point of view of fuels. As a result, they are characterised by lower calorific value, and additionally they require more antioxidants to be used. The CSME biofuel obtained from Gold of Pleasure (Camelina sativa L.) oil differs considerably from RME as regards constitution of fatty acids. It contains more linoleic acid, and less oleic acid. As a result of this situation, the CSME biodiesel obtained from Gold of Pleasure oil fails to satisfy the EN 14214, which in turn restricts its distribution via petrol stations

    Determining the effect of the addition of bio-components AME on the rheological properties of biofuels

    No full text
    The aim of the study was to determine the effect of FAME bio-components on the dynamic viscosity of biofuels in temperature range of from -20 to 50oC. Six kinds of fuels have been prepared: B0 (clear Fuel Diesel), B20, B40, B60, B80 and B100. The value attached to “B” letter denotes volumetric proportion of AME (methyl esters obtained from animala’s fat) in the mixture with fuel oil. The main device used at the measuring stand was ReolabQC rheometer manufactured by a German Anton Paar GmbH company. Dynamic viscosity especially grew rapidly after cooling biofuels to temperatures below 0°C. Dynamic viscosity AME biofuels produced from pure animal fat in a temperature range of 50 to -20°C has a value of c.a. 15 to 150[mPa∙s]. Dynamic viscosity of Biofuel AME produced from animal fat consumed it was on average higher by about 5 to 10 [mPa∙s] of AME manufactured from pure fat
    corecore