25 research outputs found

    Enamelin is critical for ameloblast integrity and enamel ultrastructure formation

    Get PDF
    Mutations in the human enamelin gene cause autosomal dominant hypoplastic amelogenesis imperfecta in which the affected enamel is thin or absent. Study of enamelin knockout NLS-lacZ knockin mice revealed that mineralization along the distal membrane of ameloblast is deficient, resulting in no true enamel formation. To determine the function of enamelin during enamel formation, we characterized the developing teeth of the Enam-/- mice, generated amelogenin-driven enamelin transgenic mouse models, and then introduced enamelin transgenes into the Enam-/- mice to rescue enamel defects. Mice at specific stages of development were subjected to morphologic and structural analysis using β-galactosidase staining, immunohistochemistry, and transmission and scanning electron microscopy. Enamelin expression was ameloblast-specific. In the absence of enamelin, ameloblasts pathology became evident at the onset of the secretory stage. Although the aggregated ameloblasts generated matrix-containing amelogenin, they were not able to create a well-defined enamel space or produce normal enamel crystals. When enamelin is present at half of the normal quantity, enamel was thinner with enamel rods not as tightly arranged as in wild type suggesting that a specific quantity of enamelin is critical for normal enamel formation. Enamelin dosage effect was further demonstrated in transgenic mouse lines over expressing enamelin. Introducing enamelin transgene at various expression levels into the Enam -/- background did not fully recover enamel formation while a medium expresser in the Enam+/- background did. Too much or too little enamelin abolishes the production of enamel crystals and prism structure. Enamelin is essential for ameloblast integrity and enamel formation. © 2014 Hu et al

    Cementomimetics—constructing a cementum-like biomineralized microlayer via amelogenin-derived peptides

    Get PDF
    This is the published version. Copyright 2012 Nature Publishing GroupCementum is the outer-, mineralized-tissue covering the tooth root and an essential part of the system of periodontal tissue that anchors the tooth to the bone. Periodontal disease results from the destructive behavior of the host elicited by an infectious biofilm adhering to the tooth root and left untreated, may lead to tooth loss. We describe a novel protocol for identifying peptide sequences from native proteins with the potential to repair damaged dental tissues by controlling hydroxyapatite biomineralization. Using amelogenin as a case study and a bioinformatics scoring matrix, we identified regions within amelogenin that are shared with a set of hydroxyapatite-binding peptides (HABPs) previously selected by phage display. One 22-amino acid long peptide regions referred to as amelogenin-derived peptide 5 (ADP5) was shown to facilitate cell-free formation of a cementum-like hydroxyapatite mineral layer on demineralized human root dentin that, in turn, supported attachment of periodontal ligament cells in vitro. Our findings have several implications in peptide-assisted mineral formation that mimic biomineralization. By further elaborating the mechanism for protein control over the biomineral formed, we afford new insights into the evolution of protein–mineral interactions. By exploiting small peptide domains of native proteins, our understanding of structure–function relationships of biomineralizing proteins can be extended and these peptides can be utilized to engineer mineral formation. Finally, the cementomimetic layer formed by ADP5 has the potential clinical application to repair diseased root surfaces so as to promote the regeneration of periodontal tissues and thereby reduce the morbidity associated with tooth loss

    Tracking Endogenous Amelogenin and Ameloblastin In Vivo

    Get PDF
    Research on enamel matrix proteins (EMPs) is centered on understanding their role in enamel biomineralization and their bioactivity for tissue engineering. While therapeutic application of EMPs has been widely documented, their expression and biological function in non-enamel tissues is unclear. Our first aim was to screen for amelogenin (AMELX) and ameloblastin (AMBN) gene expression in mandibular bones and soft tissues isolated from adult mice (15 weeks old). Using RT-PCR, we showed mRNA expression of AMELX and AMBN in mandibular alveolar and basal bones and, at low levels, in several soft tissues; eyes and ovaries were RNA-positive for AMELX and eyes, tongues and testicles for AMBN. Moreover, in mandibular tissues AMELX and AMBN mRNA levels varied according to two parameters: 1) ontogenic stage (decreasing with age), and 2) tissue-type (e.g. higher level in dental epithelial cells and alveolar bone when compared to basal bone and dental mesenchymal cells in 1 week old mice). In situ hybridization and immunohistodetection were performed in mandibular tissues using AMELX KO mice as controls. We identified AMELX-producing (RNA-positive) cells lining the adjacent alveolar bone and AMBN and AMELX proteins in the microenvironment surrounding EMPs-producing cells. Western blotting of proteins extracted by non-dissociative means revealed that AMELX and AMBN are not exclusive to mineralized matrix; they are present to some degree in a solubilized state in mandibular bone and presumably have some capacity to diffuse. Our data support the notion that AMELX and AMBN may function as growth factor-like molecules solubilized in the aqueous microenvironment. In jaws, they might play some role in bone physiology through autocrine/paracrine pathways, particularly during development and stress-induced remodeling
    corecore