607 research outputs found

    Prescribing practices of primary-care veterinary practitioners in dogs diagnosed with bacterial pyoderma

    Get PDF
    Concern has been raised regarding the potential contributions of veterinary antimicrobial use to increasing levels of resistance in bacteria critically important to human health. Canine pyoderma is a frequent, often recurrent diagnosis in pet dogs, usually attributable to secondary bacterial infection of the skin. Lesions can range in severity based on the location, total area and depth of tissue affected and antimicrobial therapy is recommended for resolution. This study aimed to describe patient signalment, disease characteristics and treatment prescribed in a large number of UK, primary-care canine pyoderma cases and to estimate pyoderma prevalence in the UK vet-visiting canine population

    Central metabolism in Mycobacterium smegmatis during the transition from O2-rich to O2-poor conditions as studied by isotopomer-assisted metabolite analysis

    Get PDF
    Isotopomer-assisted metabolite analysis was used to investigate the central metabolism of Mycobacterium smegmatis and its transition from normal growth to a non-replicating state under a hypoxic environment. Tween 80 significantly promoted aerobic growth by improving O2 transfer, while only small amount was degraded and metabolized via the TCA cycle for biomass synthesis. As the bacillus encountered hypoxic stress, isotopomer analysis suggested: (1) isocitrate lyase activity increased, which further induced glyoxylate pathway and glycine dehydrogenase for replenishing NAD+; (2) the relative amount of acetyl-CoA entering the TCA cycle was doubled, whereas little entered the glycolytic and pentose phosphate pathways

    Breed-Specific Hematological Phenotypes in the Dog: A Natural Resource for the Genetic Dissection of Hematological Parameters in a Mammalian Species

    Get PDF
    Remarkably little has been published on hematological phenotypes of the domestic dog, the most polymorphic species on the planet. Information on the signalment and complete blood cell count of all dogs with normal red and white blood cell parameters judged by existing reference intervals was extracted from a veterinary database. Normal hematological profiles were available for 6046 dogs, 5447 of which also had machine platelet concentrations within the reference interval. Seventy-five pure breeds plus a mixed breed control group were represented by 10 or more dogs. All measured parameters except mean corpuscular hemoglobin concentration (MCHC) varied with age. Concentrations of white blood cells (WBCs), neutrophils, monocytes, lymphocytes, eosinophils and platelets, but not red blood cell parameters, all varied with sex. Neutering status had an impact on hemoglobin concentration, mean corpuscular hemoglobin (MCH), MCHC, and concentrations of WBCs, neutrophils, monocytes, lymphocytes and platelets. Principal component analysis of hematological data revealed 37 pure breeds with distinctive phenotypes. Furthermore, all hematological parameters except MCHC showed significant differences between specific individual breeds and the mixed breed group. Twenty-nine breeds had distinctive phenotypes when assessed in this way, of which 19 had already been identified by principal component analysis. Tentative breed-specific reference intervals were generated for breeds with a distinctive phenotype identified by comparative analysis. This study represents the first large-scale analysis of hematological phenotypes in the dog and underlines the important potential of this species in the elucidation of genetic determinants of hematological traits, triangulating phenotype, breed and genetic predisposition

    Micro-CT study of male genitalia and reproductive system of the Asian citrus psyllid, Diaphorina citri Kuwayama, 1908 (Insecta: Hemiptera, Liviidae)

    Get PDF
    The Asian citrus psyllid (ACP), Diaphorina citri, is a major vector of the bacteria Candidatus Liberibacter asiaticus and C.L. americanus, which cause Huanglongbing disease (HLB) (aka Citrus greening disease), considered the most serious bacterial disease of citrus trees. As part of a multidisciplinary project on psyllid biology (www.citrusgreening.org), the results presented here concern a detailed anatomical study of the male reproductive system (testes, seminal vesicles, accessory glands, sperm pump, connecting ducts, and aedeagus) using micro-computed tomography (micro-CT). The study summarizes current knowledge on psyllids male reproductive system and represents significant advances in the knowledge of ACP anatomy.This work was supported by USDA-NIFA Award 2014-70016-23028 ªDeveloping an Infrastructure and Product Test Pipeline to Deliver Novel Therapies for Citrus Greening Diseaseº, 2015-2020

    Immunoproteomics Analysis of the Murine Antibody Response to Vaccination with an Improved Francisella tularensis Live Vaccine Strain (LVS)

    Get PDF
    Background: Francisella tularensis subspecies tularensis is the causative agent of a spectrum of diseases collectively known as tularemia. An attenuated live vaccine strain (LVS) has been shown to be efficacious in humans, but safety concerns have prevented its licensure by the FDA. Recently, F. tularensis LVS has been produced under Current Good Manufacturing Practice (CGMP guidelines). Little is known about the immunogenicity of this new vaccine preparation in comparison with extensive studies conducted with laboratory passaged strains of LVS. Thus, the aim of the current work was to evaluate the repertoire of antibodies produced in mouse strains vaccinated with the new LVS vaccine preparation. Methodology/Principal Findings: In the current study, we used an immunoproteomics approach to examine the repertoire of antibodies induced following successful immunization of BALB/c versus unsuccessful vaccination of C57BL/6 mice with the new preparation of F. tularensis LVS. Successful vaccination of BALB/c mice elicited antibodies to nine identified proteins that were not recognized by antisera from vaccinated but unprotected C57BL/6 mice. In addition, the CGMP formulation of LVS stimulated a greater repertoire of antibodies following vaccination compared to vaccination with laboratory passaged ATCC LVS strain. A total of 15 immunoreactive proteins were identified in both studies, however, 16 immunoreactive proteins were uniquely reactive with sera from the new formulation of LVS. Conclusions/Significance: This is the first report characterising the antibody based immune response of the new formulation of LVS in the widely used murine model of tularemia. Using two mouse strains, we show that successfully vaccinated mice can be distinguished from unsuccessfully vaccinated mice based upon the repertoire of antibodies generated. This opens the door towards downselection of antigens for incorporation into tularemia subunit vaccines. In addition, this work also highlights differences in the humoral immune response to vaccination with the commonly used laboratory LVS strain and the new vaccine formulation of LVS.Peer reviewed: YesNRC publication: Ye

    Novel Cell- and Tissue-Based Assays for Detecting Misfolded and Aggregated Protein Accumulation Within Aggresomes and Inclusion Bodies

    Get PDF
    Aggresomes and related inclusion bodies appear to serve as storage depots for misfolded and aggregated proteins within cells, which can potentially be degraded by the autophagy pathway. A homogenous fluorescence-based assay was devised to detect aggregated proteins inside aggresomes and inclusion bodies within an authentic cellular context. The assay employs a novel red fluorescent molecular rotor dye, which is essentially nonfluorescent until it binds to structural features associated with the aggregated protein cargo. Aggresomes and related structures were generated within cultured cells using various potent, cell permeable, proteasome inhibitors: MG-132, lactacystin, epoxomicin and bortezomib, and then selectively detected with the fluorescent probe. Employing the probe in combination with various fluorescein-labeled primary antibodies facilitated co-localization of key components of the autophagy system (ubiquitin, p62, and LC3) with aggregated protein cargo by fluorescence microscopy. Furthermore, cytoplasmic aggregates were highlighted in SK-N-SH human neuroblastoma cells incubated with exogenously supplied amyloid beta peptide 1–42. SMER28, a small molecule modulator of autophagy acting via an mTOR-independent mechanism, prevented the accumulation of amyloid beta peptide within these cells. The described assay allows assessment of the effects of protein aggregation directly in cells, without resorting to the use of non-physiological protein mutations or genetically engineered cell lines. With minor modification, the assay was also adapted to the analysis of frozen or formalin-fixed, paraffin-embedded tissue sections, with demonstration of co-localization of aggregated cargo with β-amyloid and tau proteins in brain tissue sections from Alzheimer’s disease patients

    13C Metabolic Flux Analysis Identifies an Unusual Route for Pyruvate Dissimilation in Mycobacteria which Requires Isocitrate Lyase and Carbon Dioxide Fixation

    Get PDF
    Mycobacterium tuberculosis requires the enzyme isocitrate lyase (ICL) for growth and virulence in vivo. The demonstration that M. tuberculosis also requires ICL for survival during nutrient starvation and has a role during steady state growth in a glycerol limited chemostat indicates a function for this enzyme which extends beyond fat metabolism. As isocitrate lyase is a potential drug target elucidating the role of this enzyme is of importance; however, the role of isocitrate lyase has never been investigated at the level of in vivo fluxes. Here we show that deletion of one of the two icl genes impairs the replication of Mycobacterium bovis BCG at slow growth rate in a carbon limited chemostat. In order to further understand the role of isocitrate lyase in the central metabolism of mycobacteria the effect of growth rate on the in vivo fluxes was studied for the first time using 13C-metabolic flux analysis (MFA). Tracer experiments were performed with steady state chemostat cultures of BCG or M. tuberculosis supplied with 13C labeled glycerol or sodium bicarbonate. Through measurements of the 13C isotopomer labeling patterns in protein-derived amino acids and enzymatic activity assays we have identified the activity of a novel pathway for pyruvate dissimilation. We named this the GAS pathway because it utilizes the Glyoxylate shunt and Anapleurotic reactions for oxidation of pyruvate, and Succinyl CoA synthetase for the generation of succinyl CoA combined with a very low flux through the succinate – oxaloacetate segment of the tricarboxylic acid cycle. We confirm that M. tuberculosis can fix carbon from CO2 into biomass. As the human host is abundant in CO2 this finding requires further investigation in vivo as CO2 fixation may provide a point of vulnerability that could be targeted with novel drugs. This study also provides a platform for further studies into the metabolism of M. tuberculosis using 13C-MFA

    Isoniazid prophylaxis differently modulates T-cell responses to RD1-epitopes in contacts recently exposed to Mycobacterium tuberculosis: a pilot study

    Get PDF
    RATIONALE: Existing data on the effect of treatment of latent tuberculosis infection (LTBI) on T-cell responses to Mycobacterium tuberculosis (MTB)-specific antigens are contradictory. Differences in technical aspects of the assays used to detect this response and populations studied might explain some of these discrepancies. In an attempt to find surrogate markers of the effect of LTBI treatment, it would be important to determine whether, among contacts of patients with contagious tuberculosis, therapy for LTBI could cause changes in MTB-specific immune responses to a variety of RD1-antigens. METHODS AND RESULTS: In a longitudinal study, 44 tuberculin skin test(+ )recent contacts were followed over a 6-month period and divided according to previous exposure to MTB and LTBI treatment. The following tests which evaluate IFN-gamma responses to RD1 antigens were performed: QuantiFERON TB Gold, RD1 intact protein- and selected peptide-based assays. Among the 24 contacts without previous exposure that completed therapy, we showed a significant decrease of IFN-gamma response in all tests employed. The response to RD1 selected peptides was found to be more markedly decreased compared to that to other RD1 antigens. Conversely, no significant changes in the response to RD1 reagents were found in 9 treated subjects with a known previous exposure to MTB and in 11 untreated controls. CONCLUSION: These data suggest that the effect of INH prophylaxis on RD1-specific T-cell responses may be different based on the population of subjects enrolled (recent infection versus re-infection) and, to a minor extent, on the reagents used

    Kinetic modeling of tricarboxylic acid cycle and glyoxylate bypass in Mycobacterium tuberculosis, and its application to assessment of drug targets

    Get PDF
    BACKGROUND: Targeting persistent tubercule bacilli has become an important challenge in the development of anti-tuberculous drugs. As the glyoxylate bypass is essential for persistent bacilli, interference with it holds the potential for designing new antibacterial drugs. We have developed kinetic models of the tricarboxylic acid cycle and glyoxylate bypass in Escherichia coli and Mycobacterium tuberculosis, and studied the effects of inhibition of various enzymes in the M. tuberculosis model. RESULTS: We used E. coli to validate the pathway-modeling protocol and showed that changes in metabolic flux can be estimated from gene expression data. The M. tuberculosis model reproduced the observation that deletion of one of the two isocitrate lyase genes has little effect on bacterial growth in macrophages, but deletion of both genes leads to the elimination of the bacilli from the lungs. It also substantiated the inhibition of isocitrate lyases by 3-nitropropionate. On the basis of our simulation studies, we propose that: (i) fractional inactivation of both isocitrate dehydrogenase 1 and isocitrate dehydrogenase 2 is required for a flux through the glyoxylate bypass in persistent mycobacteria; and (ii) increasing the amount of active isocitrate dehydrogenases can stop the flux through the glyoxylate bypass, so the kinase that inactivates isocitrate dehydrogenase 1 and/or the proposed inactivator of isocitrate dehydrogenase 2 is a potential target for drugs against persistent mycobacteria. In addition, competitive inhibition of isocitrate lyases along with a reduction in the inactivation of isocitrate dehydrogenases appears to be a feasible strategy for targeting persistent mycobacteria. CONCLUSION: We used kinetic modeling of biochemical pathways to assess various potential anti-tuberculous drug targets that interfere with the glyoxylate bypass flux, and indicated the type of inhibition needed to eliminate the pathogen. The advantage of such an approach to the assessment of drug targets is that it facilitates the study of systemic effect(s) of the modulation of the target enzyme(s) in the cellular environment
    corecore