3,130 research outputs found

    Technical Memo: Incorporating Mixture Toxicity into Bayesian Networks to calculate risk to pesticides in the Upper San Francisco Estuary.

    Get PDF
    This memo presents the methods we have developed to calculate risk of mixtures of pesticides for the Upper San Francisco Estuary (USFE). We used curve fitting to estimate the exposure-response curves for each individual chemical and then the mixture. For the mixture the models were normalized for specific ECx values. In that way the curve fitting was optimized for effects that are similar to most threshold values. A Bayesian network was then built that incorporated four different pesticides and a specific mode of action. The input distributions of the pesticides were measured amounts from each of the six risk regions. Sensitivity analysis identified the components of the Bayesian network most important in determining the toxicity. We did demonstrate that curve fitting using additive models for mixtures can be used to estimate fish toxicity in this proof-of-concept model. Bifenthrin and the specific risk region were the two variables that were most important to the risk calculation. These techniques appear applicable to estimating risk due to the variety of chemicals and other stressors in the USFE and to the multiple endpoints under managemen

    The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy

    Get PDF
    AbstractUsing confocal microscopy, onset of the mitochondrial permeability transition (MPT) in individual mitochondria within living cells can be visualized by the redistribution of the cytosolic fluorophore, calcein, into mitochondria. Simultaneously, mitochondria release membrane potential-indicating fluorophores like tetramethylrhodamine methylester. The MPT occurs in several forms of necrotic cell death, including oxidative stress, pH-dependent ischemia/reperfusion injury and Ca2+ ionophore toxicity. Cyclosporin A (CsA) and trifluoperazine block the MPT in these models and prevent cell killing, showing that the MPT is a causative factor in necrotic cell death. During oxidative injury induced by t-butylhydroperoxide, onset of the MPT is preceded by pyridine nucleotide oxidation, mitochondrial generation of reactive oxygen species, and an increase of mitochondrial free Ca2+, all changes that promote the MPT. During tissue ischemia, acidosis develops. Because of acidotic pH, anoxic cell death is substantially delayed. However, when pH is restored to normal after reperfusion (reoxygenation at pH 7.4), cell death occurs rapidly (pH paradox). This killing is caused by pH-dependent onset of the MPT, which is blocked by reperfusion at acidotic pH or with CsA. In isolated mitochondria, toxicants causing Reye’s syndrome, such as salicylate and valproate, induce the MPT. Similarly, salicylate induces a CsA-sensitive MPT and killing of cultured hepatocytes. These in vitro findings suggest that the MPT is the pathophysiological mechanism underlying Reye’s syndrome in vivo. Kroemer and coworkers proposed that the MPT is a critical event in the progression of apoptotic cell death. Using confocal microscopy, the MPT can be directly documented during tumor necrosis factor-α induced apoptosis in hepatocytes. CsA blocks this MPT and prevents apoptosis. The MPT does not occur uniformly during apoptosis. Initially, a small proportion of mitochondria undergo the MPT, which increases to nearly 100% over 1–3 h. A technique based on fluorescence resonance energy transfer can selectively reveal mitochondrial depolarization. After nutrient deprivation, a small fraction of mitochondria spontaneously depolarize and enter an acidic lysosomal compartment, suggesting that the MPT precedes the normal process of mitochondrial autophagy. A model is proposed in which onset of the MPT to increasing numbers of mitochondria within a cell leads progressively to autophagy, apoptosis and necrotic cell death

    The global oscillation network group site survey. II. Results

    Get PDF
    The Global Oscillation Network Group (GONG) Project will place a network of instruments around the world to observe solar oscillations as continuously as possible for three years. The Project has now chosen the six network sites based on analysis of survey data from fifteen sites around the world. The chosen sites are: Big Bear Solar Observatory, California; Mauna Loa Solar Observatory, Hawaii; Learmonth Solar Observatory, Australia; Udaipur Solar Observatory, India; Observatorio del Teide, Tenerife; and Cerro Tololo Interamerican Observatory, Chile. Total solar intensity at each site yields information on local cloud cover, extinction coefficient, and transparency fluctuations. In addition, the performance of 192 reasonable components analysis. An accompanying paper describes the analysis methods in detail; here we present the results of both the network and individual site analyses. The selected network has a duty cycle of 93.3%, in good agreement with numerical simulations. The power spectrum of the network observing window shows a first diurnal sidelobe height of 3 × 10⁻⁴ with respect to the central component, an improvement of a factor of 1300 over a single site. The background level of the network spectrum is lower by a factor of 50 compared to a single-site spectrum

    Breed-Specific Hematological Phenotypes in the Dog: A Natural Resource for the Genetic Dissection of Hematological Parameters in a Mammalian Species

    Get PDF
    Remarkably little has been published on hematological phenotypes of the domestic dog, the most polymorphic species on the planet. Information on the signalment and complete blood cell count of all dogs with normal red and white blood cell parameters judged by existing reference intervals was extracted from a veterinary database. Normal hematological profiles were available for 6046 dogs, 5447 of which also had machine platelet concentrations within the reference interval. Seventy-five pure breeds plus a mixed breed control group were represented by 10 or more dogs. All measured parameters except mean corpuscular hemoglobin concentration (MCHC) varied with age. Concentrations of white blood cells (WBCs), neutrophils, monocytes, lymphocytes, eosinophils and platelets, but not red blood cell parameters, all varied with sex. Neutering status had an impact on hemoglobin concentration, mean corpuscular hemoglobin (MCH), MCHC, and concentrations of WBCs, neutrophils, monocytes, lymphocytes and platelets. Principal component analysis of hematological data revealed 37 pure breeds with distinctive phenotypes. Furthermore, all hematological parameters except MCHC showed significant differences between specific individual breeds and the mixed breed group. Twenty-nine breeds had distinctive phenotypes when assessed in this way, of which 19 had already been identified by principal component analysis. Tentative breed-specific reference intervals were generated for breeds with a distinctive phenotype identified by comparative analysis. This study represents the first large-scale analysis of hematological phenotypes in the dog and underlines the important potential of this species in the elucidation of genetic determinants of hematological traits, triangulating phenotype, breed and genetic predisposition

    Down by the riverside: urban riparian ecology

    Get PDF
    Riparian areas are hotspots of interactions between plants, soil, water, microbes, and people. While urban land use change has been shown to have dramatic effects on watershed hydrology, there has been surpris- ingly little analysis of its effects on riparian areas. Here we examine the ecology of urban riparian zones, focusing on work done in the Baltimore Ecosystem Study, a component of the US National Science Foundation's Long Term Ecological Research network. Research in the Baltimore study has addressed how changes in hydrology associated with urbanization create riparian "hydrologic drought" by lowering water tables, which in turn alters soil, vegetation, and microbial processes. We analyze the nature of past and cur- rent human interactions with riparian ecosystems, and review other urban ecosystem studies to show how our observations mirror those in other cities

    Cardiopulmonary Impact of Particulate Air Pollution in High-Risk Populations: JACC State-of-the-Art Review

    Get PDF
    Fine particulate air pollution <2.5 μm in diameter (PM(2.5)) is a major environmental threat to global public health. Multiple national and international medical and governmental organizations have recognized PM(2.5) as a risk factor for cardiopulmonary diseases. A growing body of evidence indicates that several personal-level approaches that reduce exposures to PM(2.5) can lead to improvements in health endpoints. Novel and forward-thinking strategies including randomized clinical trials are important to validate key aspects (e.g., feasibility, efficacy, health benefits, risks, burden, costs) of the various protective interventions, in particular among real-world susceptible and vulnerable populations. This paper summarizes the discussions and conclusions from an expert workshop, Reducing the Cardiopulmonary Impact of Particulate Matter Air Pollution in High Risk Populations, held on May 29 to 30, 2019, and convened by the National Institutes of Health, the U.S. Environmental Protection Agency, and the U.S. Centers for Disease Control and Prevention

    Total cardiovascular or fatal events in people with type 2 diabetes and cardiovascular risk factors treated with dulaglutide in the REWIND trail:a post hoc analysis

    Get PDF
    Abstract Background The Researching cardiovascular Events with a Weekly INcretin in Diabetes (REWIND) double blind randomized trial demonstrated that weekly subcutaneous dulaglutide 1.5 mg, a glucagon like peptide-1 receptor agonist, versus matched placebo reduced the first outcome of major adverse cardiovascular event (MACE), cardiovascular death, nonfatal myocardial infarction or nonfatal stroke (594 versus 663 events) in 9901 persons with type 2 diabetes and either chronic cardiovascular disease or risk factors, and followed during 5.4 years. These findings were based on a time-to-first-event analysis and preclude relevant information on the burden of total major events occurring during the trial. This analysis reports on the total cardiovascular or fatal events in the REWIND participants Methods We compared the total incidence of MACE or non-cardiovascular deaths, and the total incidence of expanded MACE (MACE, unstable angina, heart failure or revascularization) or non-cardiovascular deaths between participants randomized to dulaglutide and those randomized to placebo. Incidences were expressed as number per 1000 person-years. Hazard ratios (HR) were calculated using the conditional time gap and proportional means models. Results Participants had a mean age of 66.2 years, 46.3% were women and 31% had previous cardiovascular disease. During the trial there were 1972 MACE or non-cardiovascular deaths and 3673 expanded MACE or non-cardiovascular deaths. The incidence of total MACE or non-cardiovascular deaths in the dulaglutide and placebo groups was 35.8 and 40.3 per 1000 person-years, respectively [absolute reduction = 4.5 per 1000 person-years; conditional time gap HR 0.90 (95% CI, 0.82–0.98) p = 0.020, and proportional means HR 0.89 (95% CI, 0.80–0.98) p = 0.022]. The incidence of total expanded MACE or non-cardiovascular deaths in the dulaglutide and placebo groups was 67.1 and 74.7 per 1000 person-years, respectively [absolute reduction = 7.6 per 1000 person-years; conditional time gap HR 0.93 (95% CI, 0.87–0.99) p = 0.023, and proportional means HR 0.90 (95% CI, 0.82–0.99) p = 0.028]. Conclusions These findings suggest that weekly subcutaneous dulaglutide reduced total cardiovascular or fatal event burden in people with type 2 diabetes at moderate cardiovascular risk. Clinical Trial Registration: https://www.clinicaltrials.gouv . Unique Identifier NCT01394952)
    corecore