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Technical Memo: Incorporating Mixture Toxicity into Bayesian Networks to calculate risk 
to pesticides in the Upper San Francisco Estuary. 
 
Eric J. Lawrence, Skyler R. Elmstrom, Emma E. Sharpe, Wayne G. Landis* 
Institute of Environmental Toxicology and Chemistry 
 
*landis@wwu.edu,  
 
 
Abstract. This memo presents the methods we have developed to calculate risk of mixtures of 

pesticides for the Upper San Francisco Estuary (USFE).  We used curve fitting to estimate the 

exposure-response curves for each individual chemical and then the mixture. For the mixture 

the models were normalized for specific ECx values. In that way the curve fitting was optimized 

for effects that are similar to most threshold values.  A Bayesian network was then built that 

incorporated four different pesticides and a specific mode of action. The input distributions of the 

pesticides were measured amounts from each of the six risk regions. Sensitivity analysis 

identified the components of the Bayesian network most important in determining the toxicity.  

We did demonstrate that curve fitting using additive models for mixtures can be used to 

estimate fish toxicity in this proof-of-concept model. Bifenthrin and the specific risk region were 

the two variables that were most important to the risk calculation. These techniques appear 

applicable to estimating risk due to the variety of chemicals and other stressors in the USFE and 

to the multiple endpoints under management. 

 
 
Introduction 
The Sacramento-San Joaquin River Delta Watershed (Delta) drains the entirety of the Central  

Valley of California with many different contaminants ending up in Suisun Bay and the Delta.  

Agricultural and urban land use practices are the primary sources for these contaminants.  

Contaminants have long been considered a threat to fish, as well as other aquatic organisms in  

the Suisun/Delta region of the upper San Francisco Estuary (USFE). The USFE contains key  

species and ecosystem services. The Delta smelt, a key forage fish endemic to California and  

only present in the San Francisco Estuary. Chinook salmon are an iconic species and many  

runs pass through the USFE to spawning grounds upstream. The macroinvertebrate  

community is a food resource to multiple fish and other species. The habitats in the region  

support these and numerous other birds, mammal, amphibian, and insect species, as well as  

provide recreational opportunities and water for irrigation, drinking, transportation.  

 

Multiple contaminants can be found in the region along with issues of temperature and other 

water quality and water availability issues.  The purpose of this study is to demonstrate how 

mixture toxicity can be estimated and risk calculated using a Bayesian network (BN) relative risk 

model (BN-RRM) .  Exposure-response models have been used to describe toxicity in BNs 

since Landis et al (2017a, 2020) incorporated the equations and the derived conditional 

probability tables as part of the process. Since 2013 we have published a series of papers using 

the BN-RRM (Landis 2021) and Bayesian networks have become widely used in environmental 

assessments (Kaikkonen et al. 2021).  

mailto:*landis@wwu.edu
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Bayesian networks, or influence diagrams, are acyclic graphical models based on conditional 

probability distributions to describe cause-effect relationships between model variables. 

Bayesian networks link cause and effect relationships through a web of nodes using conditional 

probability to estimate the likely outcome. As summarized by Tighe et al. (2013), a BN contains 

the following components (Figure 1): 

 
Node: A variable that can be divided into a number of states.  

State: Conditions of the variable depicted as numerical ranges or ranks.  

Parent or Input Node: A node that provides information to another node. 

Child or Conditional Node: The node that receives information from a parent node. 

Link: A graphical representation of the causal pathway between parent node(s) and child 

node(s). 

Conditional Probability Table (CPT): This table describes the conditional probabilities 

between the occurrence of states in the parent nodes and the resulting probabilities of states in 

the child nodes.  In this memo the conditional probability table is computed from equations 

describing the interactions of chemical mixtures and the resulting toxicity.  

 

 

 

Figure 1.  Components of a Bayesian network. 

Since the mid-2000s, Bayesian networks have been applied to environmental management, risk 
assessment, and guiding research and monitoring to support decision-making and resource 
management (Marcot et al. 2006, Pollino et al. 2007, Uusitalo et al. 2007, Barton et al. 2012, 
Landis et al. 2017a, Nyberg et al. 2006, Carriger and Newman 2011, Carriger et al. 2016). 
 
Ayre and Landis (2012) demonstrated that the causal framework of the RRM translates directly 
into the tiered node structure of a BN. Since 2012, the utility of the integrated BN-RRM has 
been applied in numerous contexts including contaminated sites (Hines and Landis 2014, 
Landis et al 2017a), emergent disease (Ayre et al. 2014), nonindigenous species (Herring et al 
2014), and forestry management (Ayre and Landis 2012). A series of papers estimating risk due 
to mercury in the South River in Virginia demonstrate the applicability of the BN-RRM to 
estimate risk to organisms and water quality (Landis et al. 2017a), human health and well-being 
(Harris et al. 2017) the evaluation of management alternatives, and adaptive management 
(Johns et al. 2017, Landis et al 2017b). 

Parent Nodes Child Node

Conditional Probability Table

States
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Lawrence (2020) and Mitchell et al. (2021) have demonstrated that mixtures of 
organophosphate pesticides can be incorporated into the BN-RRM framework. These studies 
took measured concentrations of OP pesticides to estimate acetylcholinesterase inhibition and 
translated it into changes in population dynamics for Chinook salmon. In those same models the 
water quality parameters dissolved oxygen and temperature were incorporated. Mitchell et al. 
(2021) examined the interactions within different sections of the Yakima River and estimated the 
risks to different segments of the Chinook salmon metapopulation.  
 
The rest of this memo describes the development of exposure-response curve fitting models 
and how these tools to are applied to a risk assessment of pesticides for the USFE. 
 
Methods 
Study Area. The study area is located in the Central Valley of California and encompasses an 
area of approximately 3,441 square kilometers.  It is delineated by the Legal Delta Boundary 
established under the Delta Protection Act (Section 12220 of the Water Code) (CDWR 2020a) 
and the Suisun Boundary, Conservation Zone 11, as defined by the Bay Delta Conservation 
Plan (Figure 2).  To encompass the entire Suisun Bay channel, the Suisun Bay boundary was 
extended to border the Suisun Bay Estuaries California Small Watershed, HUC12 identification 
180500010401.  In total, the area includes the southern half of the Sacramento River 
watershed, the northern half of the San Joaquin River watershed, the Delta, and Suisun Bay, 
Suisun Marsh and its watershed. 
 
Risk Regions. As part of the BN-RRM methodology, the study area was then divided into six 
smaller sub (risk) regions based on hydrological delineations and land use similarities.  
Boundary lines follow those delineations.  The resulting risk regions, from north to south, are: 
North Delta, Sacramento River, Central Delta, and South Delta, and from east to west: 
Confluence and Suisun Bay.   
 
The North Delta risk region is delineated by the Legal Delta Boundary on its north and west 
border.  Its east border includes the Sacramento Deep Water Ship Canal and is adjacent to the 
western border of the Sacramento River risk region.  The risk region encompasses the 
southwest portion of Yolo County and the eastern portion of Solano County.   
 
The Sacramento risk region is directly east and adjacent to the North Delta region, sharing its 

western border, the Sacramento Deep Water Ship Canal, with it.  Its east border extends south 

along the Legal Delta Boundary and terminates at the northern boundary of the Central Delta 

risk region.  This risk region encompasses the southeastern portion of Yolo County, the 

southwestern portion of Sacramento County and the southeastern portion of Solano County. 
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Figure 2.  Upper San Francisco 
Estuary study area and risk regions 
delineated in it. 
 
 

The Central Delta risk region borders 

the Confluence to the west and the 

study site boundary to the east.  Its 

southern boundary includes the Clifton 

Court Forebay, Union Island, and 

Robert’s Island-Trapper Slough 

watersheds that delineate the northern 

border of the South Delta risk region.  

The Central subregion northern border 

is delineated by the Threemile Slough, 

South Mokelumne River, and Hog 

Slough watershed that forms the 

southern border of the Sacramento risk 

region.  The risk region encompasses 

the southwestern portion of 

Sacramento County, the northeastern 

portion of Contra Costa County and the eastern portion of San Joaquin County. 

 

The South Delta risk region shares its northern border with the Central Delta region, whereas 

its east, south, and western borders are delineated by the Legal Delta Boundary’s southeastern, 

south, and southwestern boundaries.  The risk region encompasses the southwestern portion of 

San Joaquin County and the northeastern portion of Alameda County. 

 

The Confluence is bordered west by the Suisun Bay risk region, on the north and south by the 

Legal Delta Boundary, and east by the Central Delta risk region.  The eastern border originates 

in the south at the Lower Marsh Creek watershed border and extends north to the beginning of 

the Sacramento Deep Water Ship Canal.  The region encompasses the southwestern portion of 

Sacramento County and the northeastern section of Contra Costa County. 

 

The Suisun Bay risk region was delineated on its north, south and west borders by the Suisun 

Boundary.  It shares its eastern border with the Confluence risk region that originates south near 

Shore Acres and extends northeast to the south edge of the Lucol-Hollow watershed near 

Montezuma Hills.  Most of the region is in the southeastern section of Solano County with the 

Contra Costa County along its southern border. 

 

The Bayesian network model is designed to allow a calculation for each of these risk regions or 

for an overarching estimate. 
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Project Data. The data for the Bayesian networks for the USFE were developed using an 

integration of water quality and chemical data from California Environmental Data Exchange 

Network (CEDEN)1 and DPR Surface Water Database (SURF)2, land use data from USGS 

NLCD3, and precipitation data from Oregon State University PRISM Climate Database. IETC-

modified data and R code are accessible through GitHub4. The core data components for this 

project are currently stored within 6 GitHub repositories. Each repository contains R markdown 

documentation on how to fully reproduce data processing and analyses from a data source to its 

modified output. Output data is then incorporated into Bayesian networks in Netica. 

 

IETC GitHub repositories contain the data, code, and documentation for modifying CEDEN 

data, modifying and integrating SURF data with CEDEN data, creating dose-response models, 

analysis of macroinvertebrate data, land use tabulations for our project area, and the 

preparation of source and stressor data for Bayesian network conditional probability tables. 

 

The USFE project also utilizes spatial project data compiled and maintained within a local 

geodatabase for map production and spatial analysis. Essential shapefiles –such as project 

boundaries and sampling station locations– are derived from this geodatabase and stored within 

our GitHub repositories. 

 

Mixture Models-Dose Response Model Averaging. The concentration addition (CA) model 
normalizes concentrations within a mixture by an ECx value, or a concentration that 
corresponds to a level of toxic effect. These normalized concentrations, also called toxic units, 
represent the relative potencies of the mixture that can then be added together. 
 

∑ (
𝑐𝑖

𝐸𝐶𝑥𝑖
)

𝑛

𝑖=1
= 1  

𝑐𝑖 = Concentration of chemical i in a mixture. 

𝐸𝐶𝑥𝑖 = Effective concentration for x level of effect for chemical i. 

 

Model Averaging Approach. The model averaging approach (MAA) builds on the CA model in a 

way that allows us to use the entire dose-response relationship of a mixture while only having 

toxicity data for individual components, assuming additivity. We fit the individual dose-response 

curves for the components of the mixture to calculate the ECx values. We then normalize the 

concentrations by a common ECx, for example EC20. We normalize the concentrations for each 

mixture component and then fit a new curve to the EC20 normalized concentrations. Then we 

take the geometric mean of the model parameters to calculate an averaged curve that has 

 
1 http://www.ceden.org/; California Environmental Data Exchange Network 
2 https://www.cdpr.ca.gov/docs/emon/surfwtr/surfcont.htm; CA DPR Surface Water Database 
3 https://www.usgs.gov/centers/eros/science/national-land-cover-database; now accessible from the MRLC at 

https://www.mrlc.gov/  
4 https://github.com/WWU-IETC-R-Collab. Access to most repositories for IETC projects are private, but will be 

made publicly accessible once the project is published. 

http://www.ceden.org/
https://www.cdpr.ca.gov/docs/emon/surfwtr/surfcont.htm
https://www.usgs.gov/centers/eros/science/national-land-cover-database
https://www.mrlc.gov/
https://github.com/WWU-IETC-R-Collab
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representative shape of all the individual curves that we can put the sum of EC20 normalized 

concentrations as the x value to calculate the mixture toxicity. Since the MAA mixture is 

represented by an equation, we can input that equation into the Bayesian network to produce a 

CPT for mixture toxicity. Below is an example of the MAA using the log-logistic 3 parameter 

model. 

 

Log logistic 3 parameter model: 

𝑓(𝑥) =
𝑑

1 + exp(𝑏(log(𝑥) − log(𝑒)))
 

 

Model averaged log logistic 3 parameter model: 

 

𝑓𝑀𝐴(𝑥) =
𝑑𝐸𝐶𝑥

1 + exp(𝑏𝐸𝐶𝑥(log(𝑥) − log(𝑒𝐸𝐶𝑥)))
 

 

𝒇𝑴𝑨(𝒙) = model averaged function of x where the x axis is the total sum of ECx normalized 

concentrations of components in the mixture. 

𝒅𝑬𝑪𝒙 = the geometric mean of all the d parameters calculated from the model fitting of ECx 

normalized individual component. 

𝒃𝑬𝑪𝒙 = the geometric mean of all the d parameters calculated from the model fitting of ECx 

normalized individual components. 

𝒆𝑬𝑪𝒙 = the geometric mean of all the e parameters calculated from the model fitting of ECx 

normalized individual components. 

 

Where 𝑥 = ∑ (
𝑐𝑖

𝐸𝐶𝑥𝑖
)

𝑛

𝑖=1
 

𝒄𝒊 = Concentration of chemical i in a mixture. 

𝑬𝑪𝒙𝒊 = Effective concentration for x level of effect for chemical i. 

 

Building the BN. The basic format of the RRM has been published (Landis and Wiegers 1997; 

Wiegers et al. 1998) (Figure 3). The RRM was invented to incorporate multiple stressors and 

link them to multiple endpoints within a landscape. In each risk region there are sources of 

stressors that exist within the location or habitat that, upon release of those stressors, result in 

endpoints being exposed and adverse effects being generated. Ranks are used so that the 

combinations of sources, stressors, habitats, and effects all using different metrics can be 

combined into a final distribution of risk rankings (Landis and Wiegers 1997; Wiegers et al. 

1998; Colnar and Landis 2007, Landis et al. 2020, Lawrence 2020, Mitchell et al. 2021).  
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Figure 3.  The steps for 

building a Bayesian 

network.  Figure 3A is 

the fundamental 

structure of a cause-

effect pathway for 

determining risk at large 

scales.  This network is 

focused on the 

probability of toxicity to 

fish due to mixtures of 

pesticides (Figure 3B).  

The Bayesian network 

is the last step (Fig 3C). 

The final risk 

assessment for the 

USFE will incorporate 

multiple pathways for 

pesticides and other 

stressors. 

 

 

 

Figure 3A is an illustration of the source-stressor-habitat-effect-impact pathway that describes 

the cause-effect structure of the RRM. In this instance the sources are the various inputs into 

the risk region.  The stressors of interest are the pesticides. Other chemical and physical 

stressors can be added later.  The habitat is in this case fish habitat-the waterbodies in each 

region.  The effects are fish mortality, and fish in general are the endpoint.  The impact is the 

risk distribution calculated.  That portion of the distribution above a regulatory threshold 

constitutes the risk.  Figure 3B summarizes the specific portions of the pathway that we are 

modeling.  Finally Figure 3C is the structure of the BN described in more detail in the next 

paragraph. 

 

Figure 4 is a portrayal of the BN used in this study.  The first node designates the risk region 

that is used to supply the concentration distributions of each chemical to be used for the risk 

calculation. These concentrations are derived from the applicable CEDEN and SURF datasets. 

In the proof of concept there are two pathways.  The top pathway is for acetylcholinesterase 

(AChE) inhibitors and their effect on rainbow trout fish AChE. The inhibition of AChE is 

translated into the probability of fish mortality as in Mitchell et al. (2021). The lower pathway 

uses data from conventional toxicity tests.  Details of the nodes and the methods to estimate 

exposure responses are specific to the pathways. 

 
 

 

Chemical 

Groups
Risk Region Pathways Fish Toxicity

StressorsSources Habitats Effects Impacts

A. The relative risk model

B. The chemical pathway

C. The Bayesian network
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Figure 4. Mixture BN model for Fish Mortality.  Four different pesticides are 
incorporated. The mixture mortality nodes incorporate the mixture additive equations to 
estimate the toxicity.  The concentration distributions are taken from measured values 
for each of the risk regions.  

 

Pesticide Concentration Node States. For Bifenthrin and Chlorpyrifos, node states were chosen 

based on the EC5, EC10, EC20, EC50, and the highest record concentration for each pesticide 

in the field (Table 1).  

 

For Malathion and Diazinon, node states were chosen based on the EC5, EC10, EC20 and 

EC50 values. For both pesticides the highest record concentration in the field was below the 

EC10 value and therefore it was not included as a state for these nodes. 

 

Table 1. Chlorpyrifos concentrations that corresponds with state discretization in the 

Chlorpyrifos node 

 

 

Values (µg/L) Type 

0.0165  EC5 

0.0682 EC10 

0.317 EC20 

4.397 EC50 

5.06 Highest record concentration from field data 
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Toxicity Node States. All the toxicity nodes included in this Bayesian Network use percentage of 

organisms effected to indicate level of toxicity. This is illustrated with states that are broken 

down by 0-5, 5-10, 10-20, 20-50, and 50-100. The only exceptions to this are the AChE Activity 

node and the Total Fish Mortality node. The AChE Activity concentration-response curve 

(Figure 7) has values above 100. The Total Fish Mortality Node is additive between Mixture 

Toxicity 1 node and Mixture Toxicity 2 node so in some cases the result will be above 100.  

 

Estimating Mixture Toxicity. The model averaged approach follows the following steps: 

• For each mixture component, fit a log logistic 3 parameter model to the available toxicity 

data. 

• For each mixture component, calculate the ECx. 

• For each mixture component, normalize the concentrations of the toxicity data by the 

ECx. 

• For each mixture component, fit a log logistic 3 parameter model to the ECx normalized 

data. 

• Take the geometric mean of the three-log logistic 3 parameter model parameters for the 

ECx normalized models. 

• Use the geometric means in the log logistic 3 parameter model to create the mixture 

equation. 

 

The following figures are examples of implementing the MAA. Figure 5 shows the application of 

the MAA to data from Hutton et al. (2020) who conducted pesticide toxicity tests to silversides 

using seven pesticides with mortality as the endpoint. There are three figures (Figures 3A to 3C) 

with the test concentrations normalized to the respective EC10, EC20, and EC50 for each 

pesticide. Choosing which ECx value to normalize the data by depends on where you expect 

the environmentally relevant range of concentrations to be. The models will converge the most 

around the area of the ECx (where the ECx normalized concentration is = 1). 
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Figure 5.  Comparison of the exposure-response model curves for several chemicals 
using EC10 (A), EC20 (B) and EC50 (C) normalized concentrations.  The data are from 
Hutton et al. (2021). 

 
Figure 6 shows the application of the MAA to data from Laetz et al. (2009) who conducted 

organophosphate pesticide toxicity tests to Coho salmon for individual pesticides and binary 

mixtures. Since we have the actual mixture toxicity results, these figures show a comparison of 

the MAA approach and the actual mixture results for different ECx fractions. The actual mixture 

results are more toxic than the MAA predicted based on the single chemical models but that is 

expected given that the MAA assumes additivity and chlorpyrifos and diazinon are known to be 

a synergistic mixture. 

 
 

 
 

A B

C
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Figure 6. Comparison of the exposure-response model curves for several binary 
mixtures of organophosphates with AChE inhibition as the endpoint. The data are 
derived from the studies of Laetz et al (2009) via personal communication to the 
investigators. The ECx values used were and EC5 (A), EC10 (B), EC20 (C) and an 
EC50 (D).  

 

The conditional probability tables for estimating the effects of the pesticides are derived using 

these two approaches.  

 
Mixture Mortality 1 calculates AChE toxicity into mortality after Mitchell et al. (2021). The 

diazinon and malathion mixture uses a dose-response model constructed from a binary mixture 

experiment by Laetz et al. (2009) where they measured AChE inhibition in Coho salmon. 

Diazinon and malathion are a synergistic mixture, exhibiting more AChE inhibition than would be 

expected from additivity (Figure 7). The AChE inhibition node is linked to mortality using another 

dose-response equation (Figure 8). The equations used to construct the CPTs for the malathion 

and diazinon mixture pathway are below. 

 

Malathion and diazinon mixture equation: 

 
 
Mortality caused by AChE equation: 

 

A B

C D
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The Mixture Mortality 2 node incorporates the MAA equation for the chlorpyrifos and bifenthrin 

mixture to determine the CPT and calculate mixture effects (Figure 9). The MAA for Mixture 

Mortality 2 uses the same structure as the previous example but the MAA was calculated using 

the geometric means of the model parameters for bifenthrin and chlorpyrifos only, using the 

EC20 normalized concentrations. The MAA equation used to construct the Mixture Mortality 1 

node is below. This equation uses the log logistic 3 parameter model where the (Bifenthrin, 

Chlorpyrifos) concentrations from the chlorpyrifos and bifenthrin concentration nodes are 

converted from µg/L to mg/L, divided by the respective EC20s, and summed. 

 

Bifenthrin and Chlorpyrifos equation: 

 
 
 
 
 

 
Figure 7. Concentration-response model for AChE inhibition in Coho salmon exposed to 

a malathion and diazinon mixture with 95% confidence interval and 95% prediction 

interval. The concentration is in toxic units or EC50 normalized concentration. Data from 

Laetz et al. (2009). 
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Figure 8. Dose-response relationship between AChE inhibition and mortality for rainbow 

trout exposed to organophosphate pesticides. Data are from Duangsawasdi (1977). 

 

 
 

Figure 9. Model averaging approach for EC20 normalized mixture of Bifenthrin and 
Chlorpyrifos. Individual curves are color coded. The points are average concentrations, 
and the shaded areas are 95% confidence intervals. Data are from Hutton et al. (2021). 
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 Results 
 
Fish Mortality. The calculation for the probability of fish mortality to the Confluence risk region is 
represented by Figure 10. Note that the Risk Regions node is set to the Confluence, and the 
concentrations of the four pesticides are set to those measured in the region.  It is then possible 
to examine the effects of those mixtures by following each pathway to the Mixture Mortality 1 
(MM1) and the Mixture mortality 2 (MM2) nodes.  It is apparent that the mixture in MM2 is more 
toxic that MM1.  The overall Total Fish Mortality percent probability is displayed in the final 
node.  Although broken down by states a straightforward means of interpretating this output is 
by picking a percent threshold and counting the probability of the concentrations above that.  In 
this instance choosing 20% mortality as the threshold results in a 51.4 probability of being 
above that point.  If 10% mortality is the goal, then the probability is 71.4 probability of an 
exceedance.  
 

 
 
 

Figure 10. The calculation of the probability of Fish Mortality for the Confluence risk 
region.  

 
A similar process for performed for all of the risk regions.  Figure 11 illustrates the summary 
results based on an exceedance of an 20% mortality.  The Confluence risk region has the 
highest probability, followed by the South Delta with the Suisun Bay and Central Delta almost 
identical.  The Sacramento River and the North Delta are the lowest and with very similar 
scores.  Such a graph provides a straightforward picture of the relative risk to the Fish Mortality 
endpoint to stakeholders and decision makers.  
 
 

Confluence



 15 

 
Figure 11. The calculation of the probability of exceeding 20% mortality for each of the 
risk regions.   

 
 
Sensitivity analysis.  The next step is to rank the most important nodes in determining the 
estimated Fish Mortality for each of the risk regions.  We performed a sensitivity analysis on 
each BN that was created for the study (7 BNs total). The “Sensitivity to Findings” tool within 
Netica was used to run this analysis. “Sensitivity to Findings” measures mutual information 
between each of the input nodes and the endpoint node (Pollino et al. 2007; Norsys Software 
2014). A high value of mutual information for an input indicates a greater degree of influence on 
the endpoint node (Marcot 2012). Mutual information is a function of both the findings in the 
node (input frequency) and the relationship described in the CPT (Marcot 2012; Norsys 
Software 2014).  The outputs for each Risk Region are illustrated in Figure 12. 
 
As would be expected the nodes closest to the final node are the most important in each of the 
risk regions. The pesticide Bifenthrin is the most important of the four pesticides in the final risk 
estimation. It is about the same influence as the AChE activity node that combines the effects of 
malathion and diazinon.  
 
Uncertainty analysis. This process is a proof of concept and output should not be used to make 
policy decisions. The measurement of the pesticides within each of the risk regions is the best 
available from the databases. The estimates of toxicity using curve fitting are those for which we 
have the laboratory data, and we have conducted those analyses ourselves. The Fish Mortality 
node is that for Chinook salmon, a species that we have experience with in the past and the 
connection between AChE inhibition and mortality are well known. In the final risk assessment, 
we will be using species more similar to those in our endpoint list. 
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Figure 12. Sensitivity analysis for each of the risk regions for each node.  

 
 
Discussion 
 
As a proof-of-concept study we do demonstrate that the approach provides estimates of fish 
mortality of a four chemical mixture using direct measurements from the field.  The exposure-
response curves are generated from laboratory data, and the total toxicity is estimated to effects 
levels relevant to decision making. The tools are now available to calculate risk to an individual 
species such as the Delta Smelt, and a similar process should be able to estimate pesticide 
effects to macroinvertebrates as well.  
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