2,972 research outputs found

    Perspectives of direct Detection of supersymmetric Dark Matter in the NMSSM

    Get PDF
    In the Next-to-Minimal-Supersymmetric-Standard-Model (NMSSM) the lightest supersymmetric particle (LSP) is a candidate for the dark matter (DM) in the universe. It is a mixture from the various gauginos and Higgsinos and can be bino-, Higgsino- or singlino-dominated. Singlino-dominated LSPs can have very low cross sections below the neutrino background from coherent neutrino scattering which is limiting the sensitivity of future direct DM search experiments. However, previous studies suggested that the combination of both, the spin-dependent (SD) and spin-independent (SI) searches are sensitive in complementary regions of parameter space, so considering both searches will allow to explore practically the whole parameter space of the NMSSM. In this letter, the different scenarios are investigated with a new scanning technique, which reveals that significant regions of the NMSSM parameter space cannot be explored, even if one considers both, SI and SD, searches.Comment: 22 pages, 3 figures, this version is accepted by PLB after minor modification

    Higgs Branching Ratios in Constrained Minimal and Next-to-Minimal Supersymmetry Scenarios Surveyed

    Get PDF
    In the CMSSM the heaviest scalar and pseudo-scalar Higgs bosons decay largely into b-quarks and tau-leptons because of the large tan⁥β\tan\beta values favored by the relic density. In the NMSSM the number of possible decay modes is much richer. In addition to the CMSSM-like scenarios, the decay of the heavy Higgs bosons is preferentially into top quark pairs (if kinematically allowed), lighter Higgs bosons or neutralinos, leading to invisible decays. We provide a scan over the NMSSM parameter space to project the 6D parameter space of the Higgs sector on the 3D space of the Higgs masses to determine the range of branching ratios as function of the Higgs boson mass for all Higgs bosons. Specific LHC benchmark points are proposed, which represent the salient NMSSM features.Comment: 24 pages, 3 figures, this version is accepted by PLB after minor modification

    Owners Beware: Themes and Variations in Property Law

    Get PDF
    Within the last twenty years a series of rulings in various Commonwealth countries has had the effect of limiting the once supreme right of ownership. The Canadian Veinot case was the most recent. The present study attempts to place this case against the background of Roman property law. A historical analysis of the evolution of the Roman law reveals a concept that has not been as stable as one would think. We find that ownership as we would defineit today has not always existed. Instead, there was an early form that can hardly be distinguished from possession, followed by various other forms. Our present concept can, therefore, be seen not as an immutable institution but as another such variation upon a theme. Moreover, we may be at the threshold of a new form

    Non-Simplified SUSY: Stau-Coannihilation at LHC and ILC

    Full text link
    If new phenomena beyond the Standard Model will be discovered at the LHC, the properties of the new particles could be determined with data from the High-Luminosity LHC and from a future linear collider like the ILC. We discuss the possible interplay between measurements at the two accelerators in a concrete example, namely a full SUSY model which features a small stau_1-LSP mass difference. Various channels have been studied using the Snowmass 2013 combined LHC detector implementation in the Delphes simulation package, as well as simulations of the ILD detector concept from the Technical Design Report. We investigate both the LHC and ILC capabilities for discovery, separation and identification of various parts of the spectrum. While some parts would be discovered at the LHC, there is substantial room for further discoveries at the ILC. We finally highlight examples where the precise knowledge about the lower part of the mass spectrum which could be acquired at the ILC would enable a more in-depth analysis of the LHC data with respect to the heavier states.Comment: 42 pages, 18 figures, 12 table

    Isoform specific Interactome Analysis of Spastin

    Get PDF
    Hereditary Spastic Paraplegias (HSPs) are a heterogeneous group of inherited neurodegenerative disorders, that are distinguished by an axonopathy of the upper motor neurons and therefore clinically present with a spasticity and weakness of the lower limbs. Complicated forms of the disease can include additional symptoms such as cognitive impairment, ataxia or myopathy (Klebe et al., 2015). HSPs can be inherited in an autosomal recessive, dominant or X-chromosomal manner. The most common form of autosomal dominant HSP is caused by a mutation in the Spastic Paraplegia Gene 4 (SPG4), encoding for the protein spastin, which was first described in 1999 (BĂźrger et al., 2000, Solowska and Baas, 2015). Four isoforms of the protein, that are shown to differ in their cellular expression levels and localization (Claudiani et al., 2005, Solowska and Baas, 2015), are known to be endogenously expressed. Furthermore, spastin integrates several key pathways of HSP pathogenesis, including membrane shaping, cytoskeleton dynamics as well as intracellular transport and is known to interact with a number of HSP-associated proteins such as Atlastin or REEP1 (Evans et al., 2006, Park et al., 2010). While there have been many postulations about the disease mechanism of SPG4, such as a loss of function of the protein (Solowska et al., 2010) or the toxicity of the truncated M1 spastin isoform (Solowska et al., 2017), it was shown that not all disease-causing mutations can be explained by these theories. Therefore, up to today, the pathomechanism remains uncertain. In this work, a mass spectrometry-based approach was chosen to perform an isoform-specific interactome analysis of spastin. The Flp-InTM T-RexTM system was used to create stable SH-SY5Y overexpression cell lines for the four endogenously expressed spastin isoforms. The tagged protein was then isolated by immunoprecipitation and bound interaction partners were identified by mass spectrometry. Promising interaction candidates were subsequently confirmed in co- immunoprecipitation studies. Abstract 76 Resulting from this workflow, we were able to reveal the two novel protein-protein interaction partners of the SPG4 protein spastin, NUP43 and ATP5A. Our findings indicate an interaction of the longer M1 isoform of spastin with the NUP107-160 complex, a subunit of the nuclear pore complex, that is known to play a major role in the assembly of the nuclear pore complex and is presumed to promote the spindle assembly during mitosis. Surprisingly, another finding was the interaction of spastin with proteins of the F1 subunit of the mitochondrial ATP synthase, such as ATP5A. As an impairment of mitochondrial functions was previously shown for other forms of HSP (e.g. SPG7,13), an affection seems possible. As those novel M1 spastin interactions were identified in a simplified cell model after cell lysis, they will need to be confirmed a second in vivo cell model, for example through co-localization studies. Furthermore, the relevance of these possible spastin interactions in post-mitotic neuronal cells requires further investigation. A better understanding of the spastin function in health and disease will hopefully bring us closer to revealing the disease mechanism in SPG4 and the development of treatment options. Abstrac

    Cardiac troponin I but not cardiac troponin T adheres to polysulfone dialyser membranes in an in vitro haemodialysis model: explanation for lower serum cTnI concentrations following dialysis.

    Get PDF
    BACKGROUND: Elevated serum cardiac troponin T (cTnT) and I (cTnI) can occur in patients with chronic kidney disease. Differences in cTn concentrations between cTnT and cTnI have been reported but the mechanism of such discrepancy has not been investigated. This study investigates the clearance of cTn with the aid of an in vitro model of haemodialysis (HD). METHODS: Serum was obtained before and after a single session of dialysis from 53 patients receiving HD and assayed for cTnT and cTnI. An in vitro model of the dialysis process was used to investigate the mechanism of clearance of cTn during HD. RESULTS: Serum cTnI was significantly lower (p=0.043) following a session of HD whereas cTnT concentrations were similar to those obtained before HD. Using an in vitro model of dialysis, it was demonstrated that cTnI is not dialysed from the vascular compartment but adheres to the dialyser membrane. CONCLUSIONS: The adherence of cTnI to the dialyser membrane is responsible for the observed decrease in serum cTnI following a session of dialysis. The adherence of cTnT or T-I-C complex to the dialyser membrane could not be demonstrated and supports the observation that pre-HD and post-HD serum concentrations of cTnT are similar

    Perspectives of direct detection of supersymmetric dark matter in the MSSM and NMSSM

    Get PDF
    In the next to minimal supersymmetric standard model (NMSSM) the lightest supersymmetric particle (LSP) is a candidate for the dark matter (DM) in the universe. It is a mixture from the various gauginos and Higgsinos and can be bino-, Higgsino- or singlino-dominated. These different scenarios are investigated in detail and compared with the sensitivity of future direct DM experiments, where we use an efficient sampling technique of the parameter space. We find that LSPs with a significant amount of Higgsino and bino admixture will have cross sections in reach of future direct DM experiments, so the background from coherent neutrino scattering is not yet limiting the sensitivity. Both the spin-dependent (SD) and spinindependent (SI) searches are important, depending on the dominant admixture. If the predicted relic density is too low, additional DM candidates are needed, in which case the LSP direct DM searches loose sensitivity of the reduced LSP density. This is taken into account for expected sensitivity. The singlino-like LSP has regions of parameter space with cross sections below the “neutrino floor”. In this region the background from coherent neutrino scattering is expected to be too high, in which case the NMSSM DM will evade discovery via direct detection experiments
    • …
    corecore