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In the CMSSM the heaviest scalar and pseudo-scalar Higgs bosons decay largely into b-quarks and tau-
leptons because of the large tanβ values favored by the relic density. In the NMSSM the number of 
possible decay modes is much richer. In addition to the CMSSM-like scenarios, the decay of the heavy 
Higgs bosons is preferentially into top quark pairs (if kinematically allowed), lighter Higgs bosons or 
neutralinos, leading to invisible decays. We provide a scan over the NMSSM parameter space to project 
the 6D parameter space of the Higgs sector on the 3D space of the Higgs masses to determine the range 
of branching ratios as function of the Higgs boson mass for all Higgs bosons. Specific LHC benchmark 
points are proposed, which represent the salient NMSSM features.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

A light Higgs boson below 135 GeV is predicted within Super-
symmetry (SUSY) [1–3]. So the discovery of a Higgs-like boson 
with a mass of 125 GeV [4,5] strongly supports SUSY although 
no SUSY particles have been found so far. The precise value of 
the Higgs mass depends on radiative corrections. Within the con-
strained minimal supersymmetric standard model (CMSSM) [6] the 
tree level Higgs boson mass is below the Z 0-boson mass M Z

(91 GeV) and to reach the observed mass of 125 GeV the radiative 
corrections from stop loops have to be large, see e.g. [7–10] and 
references therein. However, a 125 GeV Higgs boson is easily ob-
tained in the minimal extension of the CMSSM where an additional 
Higgs singlet is introduced, since then the tree level value of the 
Higgs boson can be above M Z . The reason is simple: within the so-
called next-to-minimal supersymmetric standard model (NMSSM) 
[11] the mixing with the additional Higgs singlet increases the 
Higgs mass at tree level [12–19], so the radiative corrections from 
the stop loops do not need multi-TeV stop squarks in the NMSSM, 
thus avoiding the fine-tuning problem [3,2,1]. The addition of a 
Higgs singlet yields more parameters in the Higgs sector to cope 
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with the interactions between the singlet and the doublets and 
the singlet self-interaction. Furthermore, the supersymmetric part-
ner of the singlet leads to an additional Higgsino, thus extending 
the neutralino sector from 4 to 5 neutralinos. These additional par-
ticles and their interactions lead to a large parameter space, even 
if one considers the well-motivated subspace with unified masses 
and couplings at the GUT scale.

On the other hand, experiments are mostly interested in pos-
sible ranges of Higgs masses and branching ratios. With 5 neutral 
Higgs masses, of which one has to be 125 GeV and two of the 
heavy neutral Higgses masses are practically mass-degenerate, one 
is left with a 3-dimensional (3D) space in the Higgs masses in 
contrast to the 6-dimensional (6D) parameter space of the con-
strained Z3-invariant NMSSM Higgs sector. A certain point in the 
Higgs mass space can be obtained for several combinations of the 
6D parameter space, which in turn leads to a range of branching 
ratios of the Higgs bosons.

In this paper we ventured to project the 6D parameter space 
on the 3D space of Higgs masses to obtain the expected range 
of branching ratios as function of the Higgs mass for each Higgs 
boson. This allows us to look for the distinctive features between 
the NMSSM and CMSSM. After a short summary of the Higgs and 
gaugino sectors in the CMSSM and NMSSM we discuss the fit strat-
egy to project the 6D parameter space on the 3D neutral Higgs 
mass space. We conclude by summarizing the branching ratios of 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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both models and selected benchmark points showing the salient 
features of the NMSSM.

2. NMSSM Higgs sector

We focus on the well-motivated semi-constrained next-to-
minimal supersymmetric standard model (NMSSM), as described 
in Ref. [11] and use the corresponding code NMSSMTools 4.6.0 
[20] to calculate the SUSY mass spectrum, Higgs boson masses and 
branching ratios from the NMSSM parameters.

Within the NMSSM the Higgs fields consist of the two Higgs 
doublets (Hu, Hd), which appear in the MSSM as well, but together 
with an additional complex Higgs singlet S . In addition, we have 
the GUT scale parameters of the CMSSM: m0, m1/2 and A0, where 
m0(m1/2) are the common mass scales of the spin 0(1/2) SUSY 
particles at the GUT scale and A0 is the trilinear coupling of the 
CMSSM Higgs sector at the GUT scale. In total the semi-constrained 
NMSSM has nine free parameters:

m0, m1/2, A0, tanβ, λ, κ, Aλ, Aκ , μeff. (1)

Here tanβ corresponds to the ratio of the vevs of the Higgs dou-
blets, i.e. tan β ≡ vu/vd , λ represents the coupling between the 
Higgs singlet and doublets (λS Hu · Hd), κ the self-coupling of the 
singlet (κ S3/3); Aλ and Aκ are the corresponding trilinear soft 
breaking terms, μeff represents an effective Higgs mixing param-
eter and is related to the vev of the singlet s via the coupling 
λ, i.e. μeff ≡ λs. Therefore, μeff is naturally of the order of the 
electroweak scale, thus avoiding the μ-problem [11]. The latter six 
parameters in Eq. (1) form the 6D parameter space of the NMSSM 
Higgs sector.

The neutral components from the two Higgs doublets and sin-
glet mix to form three physical CP-even scaler (S) bosons and two 
physical CP-odd pseudo-scalar (P ) bosons.

The elements of the corresponding mass matrices at tree level 
read [21]:

M2
S,11 = M2

A + (M2
Z − λ2 v2) sin2 2β,

M2
S,12 = −1

2
(M2
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One observes that the element M2
S,22, which corresponds to 

the tree-level term of the lightest CMSSM Higgs boson, can be 
above M2

Z because of the λ2 v2 sin2 2β term. The diagonal ele-
ment M2 at tree level corresponds to the pseudo-scalar Higgs 
P ,11
bosons in the MSSM limit of small λ, so it is called M A . M2
S,33 and 

M2
P ,22 correspond to the diagonal terms for the additional scalar 

and pseudo-scalar Higgs boson not present in the MSSM. The mass 
of the heaviest scalar and pseudo-scalar Higgs bosons are usually 
close to each other, since the dominant term at tree level is in both 
cases M2

A , as can be seen from a comparison of M2
S,11 and M2

P ,11. 
The mass eigenstate of the charged Higgs fields reads:

M2
H± = M2

A + M2
W − 1

2
(λv)2. (4)

Note that the heavy charged and heavy neutral Higgs masses 
are all of the order of M A and largely independent of the SUSY 
masses.

3. CMSSM and NMSSM gaugino sector

Within the NMSSM the singlino, the superpartner of the Higgs 
singlet, mixes with the gauginos and Higgsinos, leading to an addi-
tional fifth neutralino. The resulting mixing matrix reads [11,22]:

M0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

M1 0 − g1 vd√
2

g1 vu√
2

0

0 M2
g2 vd√

2
− g2 vu√

2
0

− g1 vd√
2

g2 vd√
2

0 −μeff −λvu
g1 vu√

2
− g2 vu√

2
−μeff 0 −λvd

0 0 −λvu −λvd 2κs

⎞
⎟⎟⎟⎟⎟⎟⎠

(5)

with the gaugino masses M1, M2, the gauge couplings g1, g2 and 
the Higgs mixing parameter μeff as parameters. Furthermore, the 
vacuum expectation values of the two Higgs doublets vd , vu , the 
singlet s and the Higgs couplings λ–κ enter the neutralino mass 
matrix. The upper 4 × 4 submatrix of the neutralino mixing matrix 
corresponds to the MSSM neutralino mass matrix, see e.g. Ref. [3]. 
Since the additional Higgs singlino affects only the neutral gaug-
ino sector, the mixing matrix for the charginos in the NMSSM and 
CMSSM are identical:

M± =
(

M2 g2 vu

g2 vd μeff

)
. (6)

To obtain the mass eigenstates the mass matrices have to be 
diagonalized. Typically the diagonal elements in Eq. (5) and (6)
dominate over the off-diagonal terms, so the neutralino masses 
are of the order of M1, M2, the Higgs mixing parameter μeff and 
in case of the NMSSM 2κ/λμeff. The chargino masses are of the 
order of M2 and μeff.

Since we use GUT scale input parameters and the mass spec-
trum at the low mass SUSY scales is calculated via the renor-
malization group equations (RGEs), the masses are correlated. The 
gaugino masses are proportional to m1/2 [3,1,2]:

M1 ≈ 0.4m1/2, M2 ≈ 0.8m1/2, M3 ≈ Mg̃ ≈ 2.7m1/2. (7)

This leads to bino-like light neutralinos and wino-like light 
charginos in the CMSSM, since μ is typically much larger than 
m1/2 to fulfill radiative electroweak symmetry breaking (EWSB) 
[1–3]. In the NMSSM μeff is an input parameter and it can be 
chosen such that it is of the order of the electroweak scale. This 
changes both the neutralino and chargino sector. In such natu-
ral NMSSM scenarios the lightest neutralino is singlino-like and 
its mass can be degenerate to the second/third neutralino and the 
lightest chargino, which all have a mass of the order of μeff .

4. Analysis

As discussed in sect. 2 the number of free parameters in the 
NMSSM increases with respect to the MSSM. Six of the nine free 
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NMSSM parameters enter the Higgs sector. For each set of param-
eters the Higgs boson masses are completely determined: 3 scalar 
Higgs masses mHi , 2 pseudo-scalar Higgs masses mAi and the 
charged Higgs boson mass mH± . The index i increases with in-
creasing mass. The masses of A2, H3 and H± are of the order of 
M A , if M A >> M Z . Then only one of the masses is needed. Fur-
thermore, either H1 or H2 has to be the observed Higgs boson 
with a mass of 125 GeV, so there are only 3 free neutral Higgs bo-
son masses in the NMSSM, i.e. a 3D parameter space, e.g. mA1 , mH1

and mH3 ≈ mA2 ≈ mH± . Instead of scanning over the 6D parame-
ter space of the couplings to determine the range of Higgs boson 
masses, which was done by other groups in the MSSM [23,24], one 
can invert the problem and scan the 3D parameter space of the 
Higgs boson masses and check which region of the 6D parameter 
space leads to a given point in the 3D Higgs mass space.

We proceed as follows: we divide the mH1 –mH3 mass plane in 
a grid with fine mass bins for a certain value of mA1 . These grids 
were repeated with the values of mA1 varying between 25 and 
500 GeV, while mH1 ranges from 5 to 125 GeV in steps of 5 GeV. 
The heavy Higgs boson mass mH3 was allowed to vary between 
100 GeV and 2 TeV.

For each bin in each grid for a given mA1 one can use Mi-
nuit [25] to determine the corresponding NMSSM parameters at 
the GUT scale using a χ2 function, which reads:

χ2
tot = χ2

H1
+ χ2

H2
+ χ2

H3
+ χ2

LEP. (8)

The χ2 contributions are

• χ2
H1

= (mH1 − mgrid,H1)
2/σ 2

H1
. This term requires the NMSSM 

parameters to be adjusted such that the mass of the lightest 
Higgs boson mass mH1 agrees with the chosen point in the 
3D mass space mgrid,H1 . mH1 has always a mass below the ob-
served Higgs boson mass. The value of σ 2

H1
is set to 2 GeV.

• χ2
H2

= (mH2 − mobs)
2/σ 2

SM + ∑
i(ci

H2
− cobs)

2/σ 2
coup: since the 

lightest Higgs boson H1 has a mass below 125 GeV, the 
second lightest Higgs boson has to represent the observed 
Higgs boson with couplings close to the SM couplings, as 
required by the last term. ci

H2
represents the reduced cou-

plings of H2 which is the ratio of the coupling of H2 to 
particle i = fu, fd, W /Z , γ divided by the SM coupling. The 
observed couplings cobs agree within 10% with the SM cou-
plings, so σ 2

coup = 0.1. The first term is analogous to the term 
for mH1 , except that the mass of the second lightest Higgs bo-
son should have the observed Higgs boson mass, so mobs is 
set to 125.2 GeV. The corresponding uncertainty σ 2

SM equals 
1.9 GeV and results from the linear addition of the experimen-
tal and theoretical (1.5 GeV) uncertainties.

• χ2
H3

= (mH3 − mgrid,H3 )
2/σ 2

H3
: as χ2

H1
, but for the heavy scalar 

Higgs boson H3.
• χ2

LEP: includes the LEP constraints on the couplings of a light 
Higgs boson below 115 GeV and the limit on the chargino 
mass as discussed in Ref. [26].

We allowed also the rare cases, where the lightest Higgs boson 
is the observed Higgs boson with SM-like couplings and mH2 is 
above the observed mass (usually slightly). In addition, we checked 
what happens if one adds the cosmological constraints assum-
ing the LSP (largely singlino) provides the relic density and gives 
a nucleon scattering cross section consistent with the direct DM 
searches. These dark matter constraints are calculated with mi-
crOmegas [27], as interfaced within NMSSMTools.

In summary, the analysis looks like one has observed all Higgs 
boson masses and tries to infer the corresponding region of the 
6D NMSSM parameter space with the option to include the cos-
mological constraints. From the allowed region of couplings in 
Table 1
The two main NMSSM scenarios corresponding to different ranges of the masses 
and couplings which are associated with different numbered benchmark points 
(BMP). The range of tanβ is determined by the observed Higgs mass for a given 
range of the couplings κ and λ.

Scenario I II

couplings tanβ < 10 tanβ > 10
λ,κ large λ,κ small

mH3 < 400 H1 H2 (BMP1) bb̄ (BMP3)
mH3 > 400 tt̄ (BMP2) bb̄ + χ±

1 ,χ±
2 (BMP4)

the 6D space one can then deduce the allowed range of branch-
ing ratios for the considered Higgs boson masses in the 3D mass 
space.

The determination of the 6D parameter set to obtain a cer-
tain Higgs mass combination is not unique, as can be easily seen 
already from the approximate expression for the 125 GeV Higgs 
boson [11]:

M2
H ≈ M2

Z cos2 2β + �t̃ + λ2 v2 sin2 2β − λ2

κ2
(λ − κ sin 2β)2. (9)

The first two terms are identical to the CMSSM, where the first 
tree level term can become as large as M2

Z for large tanβ , but in 
the CMSSM the difference between M Z and 125 GeV has to orig-
inate mainly from the logarithmic stop mass corrections �t̃ . The 
two remaining terms originate from the mixing with the singlet 
of the NMSSM and become large for large values of the couplings 
λ and κ and small tan β . This is what we call scenario I. How-
ever, the 125 GeV Higgs boson mass can also be reached by a 
trade-off between the first two CMSSM terms and last two NMSSM 
terms using smaller couplings and larger tan β values. This is what 
we call scenario II. These scenarios have distinctly different signa-
tures. In scenario II the decays of the heavy Higgs bosons to down 
type fermions are enhanced by tan2 β , thus preferring decays to 
b-quarks and τ leptons, while decays to top quarks are suppressed 
by 1/ tan2 β . In scenario I, the large values of the couplings λ–κ
lead to decays of the heaviest scalar Higgs boson to the two lighter 
ones which is dominant for heavy Higgs boson masses below the 
tt̄ decay threshold of about 400 GeV. For mH3 > 400 GeV the decay 
into tt̄ starts to dominate.

These features have been summarized in Table 1. One addi-
tional feature of scenario II is the possibility to decay into gauginos, 
which is related to the value of μeff. This value is fixed in the 
CMSSM by EWSB and is usually large compared to M1, leading to 
the lightest neutralinos and charginos to be gaugino-like. In the 
NMSSM μeff is related to the vev of the Higgs singlet and is a free 
parameter. As mentioned above, the fit within the 3D Higgs mass 
parameter space is not unique. To make sure that the fit is not 
locked in a local instead of a global minimum we also put a grid 
in the 6D parameter space and fitted for each bin in the λ–κ plane 
the remaining parameter tanβ, Aλ, Aκ , A0 and μeff. We checked 
that the range of resulting branching ratios is compatible with the 
results from the 3D Higgs mass scan, where all parameters were 
left free simultaneously.

The transition between scenario I and II can be readily observed, 
if one plots the best fit value of tan β in the λ–κ plane, as shown 
in the top left panel of Fig. 1. The dark (blue) regions for λ ≥ 0.55
corresponds to scenario I, while the shaded (greenish) regions for 
λ ≤ 0.1 corresponds to scenario II. The right panel of Fig. 1 shows 
the χ2 function of Eq. (8) without the χ2

H3
term, since mH3 was 

allowed to vary in the plane. The region between the two green-
ish regions has a poorer χ2 value, which originates from the fact, 
that neither the lightest nor the second lightest NMSSM Higgs bo-
son has the right mass and right couplings in comparison with 
the observed Higgs boson. The white region within the λ–κ plane 
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Fig. 1. λ–κ plane for a fixed mass point m0 = m1/2 = 1000 GeV. The shaded (color) coding corresponds to the best fit value of tanβ (left) and the absolute value of χ2

(Eq. (8)) (right). Either the lightest or the second-lightest Higgs boson is allowed to correspond to the observed Higgs boson.
Table 2
NMSSMTools 4.6.0 input parameters for BMP 1–4. The SM input parameters are 
mt (pole) = 173.07 GeV, mb(mb) = 4.18 GeV and αs(M Z ) = 0.1185. For the precision 
of the Higgs masses the option 8 2 was used in NMSSMTools, which means that 
the full one loop and the full two loop corrections from top and bottom Yukawa 
couplings have been used.

BMP1 BMP2 BMP3 BMP4

Input at the GUT scale

m0 in GeV 1000.00 1000.00 1000.00 2000.00
m1/2 in GeV 1000.00 1000.00 1000.00 600.00
A0 in GeV 2666.23 2689.82 −2552.64 −3322.46
Aκ in GeV 2999.60 2888.40 −300.14 −300.06
Aλ in GeV 2888.27 3041.86 −1028.98 −640.89

Input at the SUSY scale

λ · 102 63.06 63.97 0.97 1.66
κ · 102 38.22 32.24 0.93 1.55
μeff in GeV 156.71 185.68 104.09 106.78

Input at the EW scale

tanβ 2.07 2.25 28.79 14.38

Output of selected masses

t̃1 in GeV 1199.55 1265.41 885.33 582.08
t̃2 in GeV 1794.28 1817.64 1599.46 1631.86
χ̃±

1 in GeV 151.95 181.39 104.90 104.29
χ̃±

2 in GeV 816.18 816.03 824.31 514.85
χ̃0

1 in GeV 131.47 150.90 98.90 94.25
χ̃0

2 in GeV 189.23 217.33 111.46 115.86

is not allowed, since for such large values of the parameters one 
reaches a Landau pole. For the benchmark points we choose a typ-
ical point in regions I and II (indicated by I and II in the left panel 
of Fig. 1). The corresponding parameter set and sparticle masses 
are given in Table 2. These benchmark points are each charac-
terized by a specific branching ratio being dominant, as will be 
discussed later. The Higgs boson masses and LHC production cross 
sections for the four benchmark points have been summarized in 
Table 3.

4.1. LHC limits on Higgs boson masses

Apart from the observation of the SM-like Higgs boson at 
125 GeV the LHC has not observed any other Higgs bosons, but 
placed limits on the heavy Higgs bosons. In SUSY the production 
cross section for the heavy Higgs boson is proportional to tan2 β

(see e.g. [28]), so the limits are a strong function of tan β [29,30]. 
Typically, heavy pseudo-scalar Higgs boson below 800 GeV are ex-
cluded for tanβ ≥ 45, but no limits are obtained for tan β ≤ 4. 
Furthermore, the constraints from B-physics have to be taken into 
account. The bs → μμ decay modes (proportional to tan6 β) re-
quires rather heavy SUSY masses for large tan β or, alternatively, 
a small mass splitting in the stop sector, see e.g. [31]. Not only 
bs → μμ but also b → sγ , restricts the allowed parameter space, 
Table 3
Masses of the Higgs bosons for BMP 1–4 and their corresponding Higgs production 
cross section at 14 TeV for the dominant gluon–gluon fusion process in scenario I
and the vector boson fusion bb̄H for scenario II for the neutral Higgs bosons. The 
production cross section for the charged Higgs is given for the bottom-gluon fusion 
process. Note that for gluon fusion the A2 production cross section is three times 
larger than the H3 production cross section, although the masses are similar.

BMP1 BMP2 BMP3 BMP4

Higgs masses in GeV

H1 100.0 100.0 100.0 100.0
H2 125.2 125.2 123.3 123.0
H3 350.0 450.0 850.0 1000.0
A1 300.0 300.0 300.0 300.0
A2 341.7 444.9 850.0 1000.0
H± 334.4 437.3 854.1 1003.3

σprod,ggh in pb

H1 0.55 0.42 0.18 0.20
H2 46.05 46.3 46.36 46.23
H3 2.77 1.44 < 0.01 < 0.01
A1 0.06 0.10 < 0.01 < 0.01
A2 11.14 3.38 < 0.01 < 0.01

σprod,bb̄h in pb

H1 0.35 0.25 < 0.01 < 0.01
H2 0.60 0.60 0.66 0.65
H3 0.06 0.02 0.21 0.02
A1 < 0.01 < 0.01 < 0.01 < 0.01
A2 0.07 0.03 0.21 0.02

σprod,gb in pb

H± 0.37 0.15 0.01 < 0.01

so to be in agreement with the B-physics constraints we chose 
tan β to be not larger than 30 for our benchmark points. The 
absolute lower limits of the heavier Higgs masses are given by 
the Higgs boson of 125 GeV. An additional lower limit on the 
heavier Higgs boson mass around 800 GeV exists in both sce-
narios. In scenario I this limit results from the relic density con-
straint if the correct relic density is required. Below this limit 
the relic density is too small, which is allowed if dark matter 
has contributions from particles different from the LSP. In sce-
nario II (large tanβ) the limit comes from the LHC, as discussed 
above.

4.2. Heavy Higgs branching ratios within the CMSSM

Before discussing the branching ratios in the NMSSM, we dis-
cuss the simpler case of the CMSSM, where only two free parame-
ters (A0 and tan β) enter the Higgs sector. The branching ratios of 
the heavy Higgs bosons were calculated with SUSY-HIT [32] for a 
grid in the A0–tan β plane and are plotted in Fig. 2 for two CMSSM 
mass points not excluded by the LHC (m0 = 1000/2000 GeV, 
m1/2 = 1000/600 GeV left/right-hand side). The last mass point 
corresponds to a lower value of m1/2, which leads to lower gaug-
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Fig. 2. The branching ratios of the heavy Higgs boson H in the CMSSM as function of its mass. The branching ratios for the pseudo-scalar Higgs boson are similar. The 
dominant branching ratios are shown here as bands, while the width of the bands include the variation of A0 and tanβ . For clarity the branching ratios into staus and 
neutralinos are shown as lines without band which represent the mean of the corresponding band. The decay into tt is suppressed by the large value of tanβ , required by 
the relic density in most of the parameter space. For a lower choice of m1/2 the branching ratios into charginos and neutralinos open up, as shown in the right-hand panel.
ino masses. The branching ratios to gauginos become important for 
high values of the Higgs mass, as shown in the right panel of Fig. 2. 
For higher values of m1/2 the branching ratio into top quark pairs 
becomes dominant at large Higgs boson values, as shown in the 
left panel. For mH < 1.5 TeV the branching ratios into b-quarks and 
tau-leptons always dominate. This is easily understood as follows: 
at tree level the heavy pseudo-scalar Higgs boson mass is given by 
the sum of the mass terms in the Higgs potential, i.e. m2

1 + m2
2. 

The m2
2 parameter is driven negative by the large corrections from 

the top Yukawa coupling ht and induces EWSB. However, m2
1 gets 

also large negative corrections from the bottom Yukawa coupling 
hb , which can become comparable to ht = mt/v2 for large values 
of tan β , since hb = mb/v1 = mb tan β/v2. Hence, for large values 
of tan β m2

1 and m2
2 both become small by negative corrections of 

hb and ht , respectively, thus leading to small values of mA and en-
hancing at the same time the branching into down-type fermions. 
So the heaviest Higgs bosons are expected to decay into b-quarks 
and τ -leptons for masses below 1.5 TeV, which is close to the 
reach at the LHC [33]. Masses above 1.5 TeV require smaller val-
ues of tan β in order to increase m2

2. These smaller tan β values 
allow branchings into other channels. The widths of the bands 
originate mainly from the allowed variation of A0 and tan β for 
a given mass.

4.3. Heavy Higgs branching ratios in the NMSSM

The large difference in the branching ratios of the heavy Higgs 
boson between the NMSSM and CMSSM is clear from a comparison 
of Figs. 2 and 3. The latter shows the branching ratios of the heavy 
scalar and pseudo-scalar Higgs bosons as function of their masses 
in the NMSSM, again for the two CMSSM mass points discussed 
before.

In the CMSSM the scalar and pseudo-scalar heavy bosons have 
similar branching ratios, but in the NMSSM one has two scalar 
Higgs bosons with a mass below the heaviest one, so the heaviest 
one may decay into the two lighter ones (H3 → H1 H2), if kine-
matically allowed. This is forbidden by parity conservation for the 
pseudo-scalar boson. Therefore, H3 and A2 have different branch-
ing ratios, as can be seen from Fig. 3. In the NMSSM the Higgs 
boson masses are largely independent of tan β , so for each mass 
considered both scenarios are possible, as shown in the different 
rows. The width of the bands corresponds mainly to the allowed 
variation of λ and κ . The variation of the lightest pseudo-scalar 
Higgs boson mass mA1 between 25 and 500 GeV gives a smaller 
contribution to the width of the bands.
Table 4
Summary of heavy Higgs boson branching ratios (in %) for BMP 1–4.

BMP1 BMP2 BMP3 BMP4

H3 → H1 H2 67.8 25.4 H3 → ττ 12.2 3.7
H3 → tt̄ 6.8 54.8 H3 → tt̄ 0.4 1.9
H3 → H1 H1 6.1 1.8 H3 → bb̄ 81.4 24.5
H3 → A1 Z – 1.3 H3 → χ0

1 χ0
1 0.4 1.8

H3 → χ0
1 χ0

1 7.4 8.1 H3 → χ0
1 χ0

4 1.6 2.7
H3 → χ0

1 χ0
2 0.4 0.7 H3 → χ0

1 χ0
5 – 7.6

H3 → χ0
1 χ0

3 – 4.2 H3 → χ0
2 χ0

2 – 0.6
H3 → χ+

1 χ−
1 5.3 1.9 H3 → χ0

2 χ0
4 2.5 3.9

H3 → χ0
2 χ0

5 – 11.8
H3 → χ+

1 χ−
1 1.1 3.6

H3 → χ+
1 χ−

2 – 18.6
H3 → χ+

2 χ−
1 – 18.6

A2 → A1 H2 – 1.2 A2 → ττ 12.2 3.8
A2 → tt̄ – 63.9 A2 → tt̄ 0.4 2.0
A2 → A1 H1 – 1.1 A2 → bb̄ 81.3 24.6
A2 → H1 Z 49.4 12.9 A2 → χ0

1 χ0
1 0.5

A2 → χ0
1 χ0

1 35.7 12.1 A2 → χ0
1 χ0

4 2.6 2.4
A2 → χ0

1 χ0
2 0.4 0.8 A2 → χ0

1 χ0
4 – 3.7

A2 → χ0
1 χ0

3 – 1.6 A2 → χ0
1 χ0

5 – 12.7
A2 → χ+

1 χ−
1 10.2 3.3 A2 → χ0

2 χ0
2 – 0.5

A2 → χ0
2 χ0

4 1.5 2.6
A2 → χ0

2 χ0
5 – 6.4

A2 → χ0
4 χ0

4 – 0.1
A2 → χ0

4 χ0
5 – 0.3

A2 → χ+
1 χ−

1 1.2 4.1
A2 → χ+

1 χ−
2 – 18.3

A2 → χ+
2 χ−

1 – 18.3

H± → tb̄ 83.3 73.7 H± → τντ 12.4 3.8
H± → W ± H1 13.9 15.8 H± → tb̄ 82.4 26.6
H± → χ±

1 χ0
1 2.7 6.7 H± → χ±

1 χ0
4 4.9 10.5

H± → χ±
1 χ0

3 – 2.1 H± → χ±
1 χ0

5 – 18.8
H± → χ±

2 χ0
1 – 21.3

H± → χ±
2 χ0

1 – 18.0

The bottom row with large tanβ is similar to the branch-
ing ratios in the CMSSM (Fig. 2), i.e. large branching ratios into 
down-type fermions. They differ because of the chosen small val-
ues of μeff in the NMSSM, which leads to lighter neutralinos and 
charginos in comparison with the CMSSM, where μ is large due 
to EWSB. The lightest charginos and neutralinos in the NMSSM are 
in addition Higgsino and singlino-like in contrast to the bino and 
wino-like sparticles in the CMSSM. The threshold for the gauginos 
depends on m1/2, as can be seen from a comparison of the left 
and right panels in Fig. 3. Only the sum of the branching ratios 
into either charginos or neutralinos has been indicated.
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Fig. 3. The branching ratios of a heavy Higgs boson in the NMSSM as function of its mass for scenario I (top, middle) and II (bottom). For scenario II the branching ratios for 
H3 and A2 are similar, so they have been plotted together in the last row. The main difference between the branching ratios of H3 and A2 in scenario I are the additional 
decays of A2 into A1 H1/2 (orange band) and Z H1 (solid black line). These decays are not allowed for the scalar Higgs boson H3. The dominant branching ratios are shown 
as bands, where the width of the bands represents the allowed variation of the NMSSM parameters. To simplify the plot the smaller branching ratios have been shown 
as a line representing the average of the band. The decays into gauge boson pairs is negligible in both scenarios, while bb and ττ are important in scenario II with large 
tan β . Decays into gaugino masses become possible as well, if they are light enough. Here they were chosen to correspond to CMSSM mass points not excluded by the LHC 
(m0 = 1000/2000, m1/2 = 1000/600 GeV left/right-hand side).
For low values of tan β the decay modes into b-quarks and tau-
leptons are typically absent and the decays into top quarks (when 
above threshold) or lighter Higgs bosons prevail, as can be seen 
from the top row in Fig. 3. For the pseudo-scalar Higgs mass the 
decay into two lighter scalar Higgs bosons is forbidden, so the 
main decay modes are into top quarks and gauginos, as shown in 
the middle row of Fig. 3. If tan β is large (scenario II) the dominant 
decay are into down-type fermions and gauginos, if kinematically 
allowed, as shown in the bottom row of Fig. 3.

Within the bands of the possible branching ratios we propose 
two benchmark points for each scenario: one in which the heavy 
scalar Higgs decays mostly into H1 H2 (called BMP1) and one in 
which H3 decays mostly into tt̄ (called BMP2) for scenario I. In 
scenario II BMP3 corresponds to a dominant decay into a pair of 
b quarks. In BMP4 the decay into bb̄ is reduced due to the signifi-
cant decay into charginos and neutralinos. The heavy pseudo-scalar 
Higgs mass is almost degenerate in mass with the heavy scalar 
one, so they will be produced simultaneously, but with different 
branching ratios and cross sections. The masses and cross sections 
have been summarized before in Table 3. Numerical values of the 
branching ratios for the benchmark points are listed in Tables 4
and 5. The production cross section for the neutral Higgs bosons 
has been calculated for 14 TeV using SusHi [34–42]. The cross sec-
tion for the charged Higgs boson at 14 TeV has been estimated us-
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Table 5
As in Table 4, but for the branching ratios (in %) of the lighter Higgs bosons.

BMP1 BMP2 BMP3 BMP4

H1 → bb̄ 90.1 90.1 H1 → bb̄ 70.6 60.9
H1 → ττ 9.5 9.5 H1 → cc̄ 8.3 12.1

H1 → ττ 7.2 6.2
H1 → gg 11.9 17.7
H1 → W W 1.5 2.2

H2 → bb̄ 62.4 62.1 65.9 66.0
H2 → W W 19.8 20.0 16.6 16.4
H2 → gg 5.6 5.7 5.4 5.5
H2 → ττ 6.7 6.7 7.1 7.1
H2 → cc̄ 2.8 2.8 2.8 2.9
H2 → Z Z 2.2 2.2 1.7 1.7

A1 → gg 0.0 1.2 A1 → χ0
1 χ0

1 26.1 25.7
A1 → ττ 0.0 1.8 A1 → χ0

2 χ0
2 23.6 23.3

A1 → bb̄ 0.0 14.3 A1 → χ+
1 χ−

1 50.2 50.7
A1 → Z H1 0.4 82.9
A1 → χ0

1 χ0
1 99.6 –

ing FeynHiggs [43–47]. Scenario I is dominated by the gluon fusion 
production cross section, while for scenario II with large tan β the 
bb̄H cross section dominates. Since the cross sections for charged 
Higgs production originate from the same diagrams in the MSSM 
and NMSSM, the values for the MSSM, as calculated with Feyn-
Higgs, were taken. In the following we discuss some of the features 
of these benchmark points.

4.3.1. Benchmark point BMP1 with H1 H2 decay dominant in scenario I
The H3 and A2 bosons have practically the same mass (350 

and 342 GeV, respectively), but they have quite different decays: 
H3 decays for 68% into H1 + H2, while A2 decays for 49% into 
H1 + Z and the remaining decay modes are largely gauginos but 
the production cross section of A2 is 3 times larger compared 
to H3, see Table 3. The decay mode of the lightest pseudo-scalar 
Higgs boson A1, shown in Table 5, is not Z + H1, as in BMP2 (al-
though the masses of the lighter Higgs bosons are identical), but 
the main decay mode is now into LSPs, so an invisible final state. 
This benchmark point is characterized by a large fraction of double 
Higgs production in the H2 decay, while the A2 decays into Z + H1
or gauginos, either neutral or charged, which in turn have a rich 
spectrum of decay modes. The A1 boson decays largely into invis-
ible neutralinos, while the lightest Higgs boson H1 decays largely 
into bb and tau-pairs. The charged Higgs boson decays largely into 
tb̄ and W ±H1.

4.3.2. Benchmark point BMP2 with tt decay dominant in scenario I
The H3 and A2 bosons have similar masses (450 and 446 GeV, 

respectively). In both cases the tt̄ decay is dominant, so the cross 
sections can be added. Note that H3 can decay into H1 + H2 as 
well, while for A2 the decay into H1 + Z and LSPs yields the 
second largest branching ratio. A1 decays largely into Z + H1, as 
shown in Table 5. So this benchmark point is characterized by a 
large fraction of tt̄ final states, which can be searched for as a 
broad bump around 450 GeV in the tail of the tt̄ invariant mass 
spectrum. Furthermore, events with two Z bosons and the H1
Higgs boson of 100 GeV with practically SM decay modes can be 
searched for from the A2 decay mentioned above. As can be seen 
from Table 4, the dominant decay mode for the charged Higgs is 
into tb̄ and W ±H1.

4.4. Benchmark point BMP3 with bb decay dominant in scenario II

For this benchmark point the chosen masses of the heavy Higgs 
boson are heavier in comparison to BMP1 and BMP2. The branch-
ing ratios of H3 and A2 are shown in Table 4. The mass splitting 
for such heavy Higgs boson masses is negligible. In both cases the 
bb̄ decay is dominant, so the cross sections can be added. But 
since this channel has a large background the smaller branching 
ratio into τ leptons with a smaller background may be the pre-
ferred search channel for the heavy Higgs boson. A1 decays largely 
into charginos and neutralinos, as shown in Table 5. Although the 
mass of the charged Higgs boson is heavier compared to BMP1 
and BMP2, the decay into tb̄ and τντ is dominant, because of the 
heavy charginos and neutralinos.

4.5. Benchmark point BMP4 with χ±
1 χ±

2 decay dominant in scenario II

The last benchmark point has heavy Higgs boson masses 
around 1 TeV. The mass difference for H3 and A2 is negligible 
and their branching ratios are shown in Table 4. The bb̄ decay 
is still significant, but the decay into charginos starts to dom-
inate. Since the decay mode of the dominating branching ratio 
includes χ±

2 one expects gauge bosons from its decay. Invisible 
decays are expected from A1, which decays largely into charginos 
and neutralinos, as shown in Table 5. For the charged Higgs boson 
the decay into charginos and missing transverse energy from the 
neutralinos starts to dominate, so the decay into tb̄ decreases in 
comparison with the other benchmark points.

5. Conclusion

We surveyed the branching ratios of the Higgs bosons in the 
constrained minimal and next-to minimal supersymmetry scenar-
ios. To limit the parameter space we restricted ourselves to the 
well-motivated common GUT scale masses for the SUSY partners, 
but the Higgs boson masses and their branching ratios are largely 
independent of the GUT scale constraints. The interest in the next-
to-minimal scenario with an additional singlet stems among others 
from the increase at tree level of the SM-like Higgs boson, so the 
125 GeV does not need large radiative corrections from stop loops. 
In addition, the μ-parameter in the NMSSM is naturally of the or-
der of the electroweak scale, thus avoiding the μ-problem [11]. 
However, the Higgs sector has now 6 free parameters. This 6D 
parameter space makes it difficult to obtain insight in the possi-
ble range of masses and branching ratios. To solve this problem 
we considered instead the parameter space of the 6 Higgs masses, 
which reduces to a 3D mass space, if one takes into account that 
one Higgs mass has to be 125 GeV and the heavy Higgs bosons are 
practically mass-degenerate. By projecting the 6D parameter space 
of the NMSSM Higgs sector on the 3D parameter space of the 
masses we obtained the range of branching ratios of each Higgs 
boson mass in two typical scenarios, as shown in Table 1. Two 
benchmark points for each scenario have been presented, which 
can be used to search for signatures distinguishing the MSSM and 
NMSSM.

The recent diphoton excess by CMS [48] and ATLAS [49] may 
hint for a new particle with a mass around 750 GeV, which is 
in agreement with the allowed mass range for the heavy Higgs 
bosons. Due to the large mass many decay channels are possible, 
so the loop induced decay into photons leads to a branching ratio 
of the order of 10−5. The number of expected events is then well 
below one. However, about 10 have been observed in both exper-
iments at a similar mass, which makes it difficult to dismiss the 
excess as a statistical fluctuation. The large discrepancy with the 
expected NMSSM cross section makes it also difficult to interpret 
the excess in the framework of SUSY, but many other explanations 
have been proposed, see e.g. [50–54]. Fortunately, future data will 
soon reveal if these are fluctuations or new physics.
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