199 research outputs found

    Storable Votes and Judicial Nominations in the U.S. Senate

    Get PDF
    We model a procedural reform aimed at restoring a proper role for the minority in the confirmation process of judicial nominations in the U.S. Senate. We propose that nominations to the same level court be collected in periodic lists and voted upon individually with Storable Votes, allowing each senator to allocate freely a fixed number of total votes. Although each nomination is decided by simple majority, storable votes make it possible for the minority to win occasionally, but only when the relative importance its members assign to a nomination is higher than the relative importance assigned by the majority. Numerical simulations, motivated by a game theoretic model, show that under plausible assumptions a minority of 45 senators would be able to block between 20 and 35 percent of nominees. For most parameter values, the possibility of minority victories increases aggregate welfare

    Association of the habitual dietary intake with the fatty liver index and effect modification by metabotypes in the population-based KORA-Fit study

    Get PDF
    Background Non-alcoholic fatty liver disease (NAFLD) is an emerging threat for public health with diet being a major risk factor in disease development and progression. However, the effects of habitual food consumption on fatty liver are still inconclusive as well as the proposed role of the individuals’ metabolic profiles. Therefore, the aim of our study is to examine the associations between diet and NAFLD with an emphasis on the influence of specific metabotypes in the general population. Methods A total of 689 participants (304 men and 385 women) of the KORA-Fit (S4) survey, a follow-up study of the population-based KORA cohort study running in the Region of Augsburg, Germany, were included in this analysis. Dietary information was derived from repeated 24-h food lists and a food frequency questionnaire. The intake of energy and energy-providing nutrients were calculated using the national food composition database. The presence of fatty liver was quantified by the fatty liver index (FLI), and metabotypes were calculated using K-means clustering. Multivariable linear regression models were used for the analysis of habitual food groups and FLI; for the evaluation of macronutrients, energy substitution models were applied. Results A higher consumption of nuts and whole grains, and a better diet quality (according to Alternate Healthy Eating Index and Mediterranean Diet Score) were associated with lower FLI values, while the intake of soft drinks, meat, fish and eggs were associated with a higher FLI. The isocaloric substitution of carbohydrates with polyunsaturated fatty acids was associated with a decreased FLI, while substitution with monounsaturated fatty acids and protein showed increased FLI. Statistically significant interactions with the metabotype were observed for most food groups. Conclusion The consumption of plant-based food groups, including nuts and whole grains, and diet quality, were associated with lower FLI values, whereas the intake of soft drinks and products of animal origin (meat, fish, eggs) were associated with a higher FLI. The observed statistically significant interactions with the metabotype for most food groups could help to develop targeted prevention strategies on a population-based level if confirmed in

    Interfacial Dzyaloshinskii-Moriya interaction in epitaxial W/Co/Pt multilayers

    Full text link
    Dzyaloshinskii-Moriya interaction (DMI) manifesting in asymmetric layered ferromagnetic films gives rise to non-colinear spin structures stabilizing magnetization configurations with nontrivial topology. In this work magnetization reversal, domain structure, and strength of DMI are related with the structure of W/Co/Pt multilayers grown by molecular beam epitaxy. Applied growth method enables fabrication of layered systems with higher crystalline quality than commonly applied sputtering techniques. As a result, a high value of D coefficient was determined from the aligned magnetic domain stripe structure, substantially exceeding 2 mJ/m2. The highest value of DMI value Deff_{eff} = 2.64mj/m2 and strength of surface DMI parameter DS = 1.83pJ/m for N=10 has been observed. Experimental results coincide precisely with those obtained from structure based micromagnetic modelling and density functional theory calculations performed for well-defined layered stacks. This high value of DMI strength originates from dominating contributions of the interfacial atomic Co layers and additive character from both interface types

    The SDO Education and Outreach (E/PO) Program: Changing Perceptions One Program at a Time

    Get PDF
    The Solar Dynamics Observatory (SDO) Education and Public Outreach (E/PO) program began as a series of discrete efforts implemented by each of the instrument teams and has evolved into a well-rounded program with a full suite of national and international programs. The SDO E/PO team has put forth much effort in the past few years to increase our cohesiveness by adopting common goals and increasing the amount of overlap between our programs. In this paper, we outline the context and overall philosophy for our combined programs, present a brief overview of all SDO E/PO programs along with more detailed highlight of a few key programs, followed by a review of our results up to date. Concluding is a summary of the successes, failures, and lessons learned that future missions can use as a guide, while further incorporating their own content to enhance the public's knowledge and appreciation of NASA?s science and technology as well as its benefit to society

    The Solar Dynamics Observatory (SDO) Education and Outreach (E/PO) Program: Changing Perceptions One Program at a Time

    Get PDF
    We outline the context and overall philosophy for the combined Solar Dynamics Observatory (SDO) Education and Public Outreach (E/PO) program, present a brief overview of all SDO E/PO programs along with more detailed highlights of a few key programs, followed by a review of our results to date, conclude a summary of the successes, failures, and lessons learned, which future missions can use as a guide, while incorporating their own content to enhance the public's knowledge and appreciation of science and technology as well as its benefit to society

    Study of ultrathin Pt/Co/Pt trilayers modified by nanosecond XUV pulses from laser-driven plasma source

    Get PDF
    We have studied the structural mechanisms responsible for the magnetic reorientation between in-plane and out-of-plane magnetization in the (25 nm Pt)/(3 and 10 nm Co)/(3 nm Pt) trilayer systems irradiated with nanosecond XUV pulses generated with laser-driven gas-puff target plasma source of a narrow continuous spectrum peaked at wavelength of 11 nm. The thickness of individual layers, their density, chemical composition and irradiation-induced lateral strain were deduced from symmetric and asymmetric X-ray diffraction (XRD) patterns, grazing-incidence X-ray reflectometry (GIXR), grazing incidence X-ray fluorescence (GIXRF), extended X-ray absorption fine structure (EXAFS) and transmission electron microscopy (TEM) measurements. In the as grown samples we found, that the Pt buffer layers are relaxed and that the layer interfaces are sharp. As a result of a quasi-uniform irradiation of the samples, the XRD, EXAFS, GIXR and GIXRF data reveal the formation of two distinct layers composed of Pt1-xCox alloys with different Co concentrations, dependent on the thickness of the as grown magnetic Co film but with similar ∼1% lateral tensile residual strain. For smaller exposure dose (lower number of accumulated pulses) only partial interdiffusion at the interfaces takes place with the formation of a tri-layer composed of Co-Pt alloy sandwiched between thinned Pt layers, as revealed by TEM. The structural modifications are accompanied by magnetization changes, evidenced by means of magneto-optical microscopy. The difference in magnetic properties of the irradiated samples can be related to their modification in Pt1-xCox alloy composition, as the other parameters (lateral strain and alloy thickness) remain almost unchanged. The out-of-plane magnetization observed for the sample with initially 3 nm Co layer can be due to a significant reduction of demagnetization factor resulting from a lower Co concentration

    Newly characterized interaction stabilizes DNA structure: oligoethylene glycols stabilize G-quadruplexes CH–π interactions

    Get PDF
    Oligoethylene glycols are used as crowding agents in experiments that aim to understand the effects of intracellular environments on DNAs. Moreover, DNAs with covalently attached oligoethylene glycols are used as cargo carriers for drug delivery systems. To investigate how oligoethylene glycols interact with DNAs, we incorporated deoxythymidine modified with oligoethylene glycols of different lengths, such as tetraethylene glycol (TEG), into DNAs that form antiparallel G-quadruplex or hairpin structures such that the modified residues were incorporated into loop regions. Thermodynamic analysis showed that because of enthalpic differences, the modified G-quadruplexes were stable and the hairpin structures were slightly unstable relative to unmodified DNA. The stability of G-quadruplexes increased with increasing length of the ethylene oxides and the number of deoxythymidines modified with ethylene glycols in the G-quadruplex. Nuclear magnetic resonance analyses and molecular dynamics calculations suggest that TEG interacts with bases in the G-quartet and loop via CH-pi and lone pair-pi interactions, although it was previously assumed that oligoethylene glycols do not directly interact with DNAs. The results suggest that numerous cellular co-solutes likely affect DNA function through these CH-pi and lone pair-pi interactions

    Comparison of Population-Based Association Study Methods Correcting for Population Stratification

    Get PDF
    Population stratification can cause spurious associations in population–based association studies. Several statistical methods have been proposed to reduce the impact of population stratification on population–based association studies. We simulated a set of stratified populations based on the real haplotype data from the HapMap ENCODE project, and compared the relative power, type I error rates, accuracy and positive prediction value of four prevailing population–based association study methods: traditional case-control tests, structured association (SA), genomic control (GC) and principal components analysis (PCA) under various population stratification levels. Additionally, we evaluated the effects of sample sizes and frequencies of disease susceptible allele on the performance of the four analytical methods in the presence of population stratification. We found that the performance of PCA was very stable under various scenarios. Our comparison results suggest that SA and PCA have comparable performance, if sufficient ancestral informative markers are used in SA analysis. GC appeared to be strongly conservative in significantly stratified populations. It may be better to apply GC in the stratified populations with low stratification level. Our study intends to provide a practical guideline for researchers to select proper study methods and make appropriate inference of the results in population-based association studies
    • …
    corecore