568 research outputs found

    Genetic diversity of Desulfovibrio spp. in environmental samples analyzed by denaturing gradient gel electrophoresis of [NiFe] hydrogenase gene fragments

    Get PDF
    The genetic diversity of Desulfovibrio species in environmental samples was determined by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified [NiFe] hydrogenase gene fragments. Five different PCR primers were designed after Comparative analysis of [NiFe] hydrogenase gene sequences from three Desulfovibrio species. These primers were tested in different combinations on the genomic DNAs of a variety of hydrogenase-containing and hydrogenase-lacking bacteria. One primer pair was found to be specific for Desulfovibrio species only, while the others gave positive results with other bacteria also. By using this specific primer pair, we were able to amplify the [NiFe] hydrogenase genes of DNAs isolated from environmental samples and to detect the presence of Desulfovibrio species in these samples. However, only after DGGE analysis of these PCR products could the number of different Desulfovibrio species within the samples be determined. DGGE analysis Of PCR products from differ ent bioreactors demonstrated up to two bands, while at least five distinguishable bands were detected in a microbial mat sample. Because these bands most likely represent as many Desulfovibrio species present in these samples, we conclude that the genetic diversity of Desulfovibrio species in the natural microbial mat is far greater than that in the experimental bioreactors

    Molekularbiologische Charakterisierung von sulfatreduzierenden Bakterien in Umweltproben unter den Aspekten Diversitat und Aktivitat

    No full text

    Distribution of sulfate-reducing bacteria in a stratified Fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments

    Get PDF
    The sulfate-reducing bacterial populations of a stratified marine water column, Mariager Fjord, Denmark, were investigated by molecular and culture-dependent approaches in parallel. Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA and DNA encoding rRNA (rDNA) isolated from the water column indicated specific bacterial populations in different water column layers and revealed a highly differentiated pattern of rRNA- and rDNA-derived PCR amplificates, probably reflecting active and resting bacterial populations. Hybridization of DGGE patterns with rRNA probes indicated the increased presence and activity (by at least 1 order of magnitude) of sulfate-reducing bacteria within and below the chemocline. Parallel to this molecular approach, an approach involving most-probable-number (MPN) counts was used, and it found a similar distribution of cultivable sulfate-reducing bacteria in the water column of Mariager Fjord, Approximately 25 cells and 250 cells per ml above and below the chemocline, respectively, were found. Desulfovibrio-and Desulfobulbus-relateA strains occurred in the oxic zone. DGGE bands from MPN cultures were sequenced and compared with those obtained from nucleic acids extracted from water column samples. The MPN isolates were phylogenetically affiliated with sulfate-reducing delta subdivision proteobacteria (members of the genera Desulfovibrio, Desulfobulbus, and Desulfobacter), whereas the molecular isolates constituted an independent lineage of the delta subdivision proteobacteria. DGGE of PCR-amplified nucleic acids with general eubacterial PCR primers conceptually revealed the general bacterial population, whereas the use of culture media allowed cultivable sulfate-reducing bacteria to be selected. A parallel study of Mariager Fjord biogeochemistry, bacterial activity, and bacterial counts complementing this investigation has been presented elsewhere (N. B. Ramsing, H. Fossing, T. G. Ferdelman, F. Andersen, and B. Thamdrup, Appl. Environ. Microbiol. 62:1391-1404, 1996)

    Genome-scale analysis identifies paralog lethality as a vulnerability of chromosome 1p loss in cancer.

    Get PDF
    Functional redundancy shared by paralog genes may afford protection against genetic perturbations, but it can also result in genetic vulnerabilities due to mutual interdependency1-5. Here, we surveyed genome-scale short hairpin RNA and CRISPR screening data on hundreds of cancer cell lines and identified MAGOH and MAGOHB, core members of the splicing-dependent exon junction complex, as top-ranked paralog dependencies6-8. MAGOHB is the top gene dependency in cells with hemizygous MAGOH deletion, a pervasive genetic event that frequently occurs due to chromosome 1p loss. Inhibition of MAGOHB in a MAGOH-deleted context compromises viability by globally perturbing alternative splicing and RNA surveillance. Dependency on IPO13, an importin-β receptor that mediates nuclear import of the MAGOH/B-Y14 heterodimer9, is highly correlated with dependency on both MAGOH and MAGOHB. Both MAGOHB and IPO13 represent dependencies in murine xenografts with hemizygous MAGOH deletion. Our results identify MAGOH and MAGOHB as reciprocal paralog dependencies across cancer types and suggest a rationale for targeting the MAGOHB-IPO13 axis in cancers with chromosome 1p deletion

    Use of injectable hormonal contraception and women’s risk of herpes simplex virus type 2 acquisition: a prospective study of couples in Rakai, Uganda

    Get PDF
    Background The injectable hormonal contraceptive depo-medroxyprogesterone acetate (DMPA) has been associated with increased risk of HIV acquisition, but fi ndings are inconsistent. Whether DMPA increases the risk of other sexually transmitted viral infections is unknown. We assessed the association between DMPA use and incident herpes simplex virus type 2 (HSV2) infection in women. Methods In this prospective study, we enrolled HIV-negative and HSV2-negative women aged 15–49 years whose HIV-negative male partners were concurrently enrolled in a randomised trial of male circumcision in Rakai, Uganda. We excluded women if either they or their male partners HIV seroconverted. The primary outcome was HSV2 seroconversion, assessed annually. The male circumcision trial was registered with ClinicalTrials.gov, number NCT00425984. Findings Between Aug 11, 2003, and July 6, 2006, we enrolled 682 women in this study. We noted HSV2 seroconversions in 70 (10%) women. Incidence was 13·5 per 100 person-years in women consistently using DMPA (nine incident infections per 66·5 person-years), 4·3 per 100 person-years in pregnant women who were not using hormonal contraception (18 incident infections per 423·5 person-years), and 6·6 per 100 person-years in women who were neither pregnant nor using hormonal contraception (35 incident infections per 529·5 person-years). Women consistently using DMPA had an adjusted hazard ratio for HSV2 seroconversion of 2·26 (95% CI 1·09–4·69; p=0·029) compared with women who were neither pregnant nor using hormonal contraception. Of 132 women with HSV2-seropositive partners, seroconversion was 36·4 per 100 person-years in consistent DMPA users (four incident infections per 11 person-years) and 10·7 per 100 person-years in women who were neither pregnant nor using hormonal contraception (11 incident infections per 103 person-years; adjusted hazard ratio 6·23, 95% CI 1·49–26·3; p=0·012). Interpretation Consistent DMPA use might increase risk of HSV2 seroconversion; however, study power was low. These fi ndings should be assessed in larger populations with more frequent follow-up than in this study, and other contraceptive methods should also be assessed. Access to a wide range of highly eff ective contraceptive methods is needed for women, particularly in sub-Saharan Africa

    Transmission Selects for HIV-1 Strains of Intermediate Virulence: A Modelling Approach

    Get PDF
    Recent data shows that HIV-1 is characterised by variation in viral virulence factors that is heritable between infections, which suggests that viral virulence can be naturally selected at the population level. A trade-off between transmissibility and duration of infection appears to favour viruses of intermediate virulence. We developed a mathematical model to simulate the dynamics of putative viral genotypes that differ in their virulence. As a proxy for virulence, we use set-point viral load (SPVL), which is the steady density of viral particles in blood during asymptomatic infection. Mutation, the dependency of survival and transmissibility on SPVL, and host effects were incorporated into the model. The model was fitted to data to estimate unknown parameters, and was found to fit existing data well. The maximum likelihood estimates of the parameters produced a model in which SPVL converged from any initial conditions to observed values within 100–150 years of first emergence of HIV-1. We estimated the 1) host effect and 2) the extent to which the viral virulence genotype mutates from one infection to the next, and found a trade-off between these two parameters in explaining the variation in SPVL. The model confirms that evolution of virulence towards intermediate levels is sufficiently rapid for it to have happened in the early stages of the HIV epidemic, and confirms that existing viral loads are nearly optimal given the assumed constraints on evolution. The model provides a useful framework under which to examine the future evolution of HIV-1 virulence
    corecore