208 research outputs found
Evaluation of Operative Notes Concerning Laparoscopic Cholecystectomy: Are Standards Being Met?
Background - Laparoscopic cholecystectomy (LC) is the most performed minimal invasive surgical procedure and has a relatively high complication rate. As complications are often revealed postoperatively, clear, accurate, and timely written operative notes are important in order to recall the procedure and start follow-up treatment as soon as possible. In addition, the surgeon’s operative notes are important to assure surgical quality and communication with other healthcare providers. The aim of the present study was to assess compliance with the Dutch guidelines for writing operative notes for LC. Methods - Nine hospitals were asked to send 20 successive LC operative notes. All notes were compared to the Dutch guideline by two reviewers and double-checked by a third reviewer. Statistical analyses on the ‘‘not described’’ items were performed. Results - All hospitals participated. Most notes complied with the Dutch guideline (52–69%); 19–30% of items did not comply. Negative scores for all hospitals were found, mainly for lacking a description of the patient’s posture (average 69%), bandage (94%), blood loss (98%), name of the scrub nurse (87%), postoperative conclusion (65%), and postoperative instructions (78%). Furthermore, notes from one community hospital and two teaching hospitals complied significantly less with the guidelines. Conclusions - Operative notes do not always fully comply with the standards set forth in the guidelines published in the Netherlands. This could influence adjuvant treatment and future patient treatment, and it may make operative notes less suitable background for other purposes. Therefore operative note writing should be taught as part of surgical training, definitions should be provided, and procedure-specific guidelines should be established to improve the quality of the operative notes and their use to improve patient safety.Industrial DesignIndustrial Design Engineerin
Extracellular Vesicles:Novel Opportunities to Understand and Detect Neoplastic Diseases
With a size range from 30 to 1000 nm, extracellular vesicles (EVs) are one of the smallest cell components able to transport biologically active molecules. They mediate intercellular communications and play a fundamental role in the maintenance of tissue homeostasis and pathogenesis in several types of diseases. In particular, EVs actively contribute to cancer initiation and progression, and there is emerging understanding of their role in creation of the metastatic niche. This fact underlies the recent exponential growth in EV research, which has improved our understanding of their specific roles in disease and their potential applications in diagnosis and therapy. EVs and their biomolecular cargo reflect the state of the diseased donor cells, and can be detected in body fluids and exploited as biomarkers in cancer and other diseases. Relatively few studies have been published on EVs in the veterinary field. This review provides an overview of the features and biology of EVs as well as recent developments in EV research including techniques for isolation and analysis, and will address the way in which the EVs released by diseased tissues can be studied and exploited in the field of veterinary pathology. Uniquely, this review emphasizes the important contribution that pathologists can make to the field of EV research: pathologists can help EV scientists in studying and confirming the role of EVs and their molecular cargo in diseased tissues and as biomarkers in liquid biopsies
A combined western and bead-based multiplex platform to characterize extracellular vesicles
In regenerative medicine, extracellular vesicles (EVs) are considered as a promising cell-free approach. EVs are lipid bilayer-enclosed vesicles secreted by cells and are key players in intercellular communication. EV-based therapeutic approaches have unique advantages over the use of cell-based therapies, such as a high biological, but low immunogenic and tumorigenic potential. To analyze the purity and biochemical composition of EV preparations, the International Society for Extracellular Vesicles (ISEV) has prepared guidelines recommending the analysis of multiple (EV) markers, as well as proteins coisolated/recovered with EVs. Traditional methods for EV characterization, such as Western blotting, require a relatively high EV sample/protein input for the analysis of one protein. We here evaluate a combined Western and bead-based multiplex platform, called DigiWest, for its ability to detect simultaneously multiple EV markers in an EV-containing sample with inherent low protein input. DigiWest analysis was performed on EVs from various sources and species, including mesenchymal stromal cells, notochordal cells, and milk, from human, pig, and dog. The study established a panel of nine antibodies that can be used as cross-species for the detection of general EV markers and coisolates in accordance with the ISEV guidelines. This optimized panel facilitates the parallel evaluation of EV-containing samples, allowing for a comprehensive characterization and assessment of their purity. The total protein input for marker analysis with DigiWest was 1 μg for all nine antibodies, compared with ∼10 μg protein input required for traditional Western blotting for one antibody. These findings demonstrate the potential of the DigiWest technique for characterizing various types of EVs in the regenerative medicine field
Improved Flow Cytometric Light Scatter Detection of Submicron-Sized Particles by Reduction of Optical Background Signals
Flow cytometry allows multiparameter analysis on a single-cell basis and is currently the method of choice to rapidly assess heterogeneity of cell populations in suspension. With the research field of extracellular vesicles (EV) rapidly expanding, there is an increased demand to address heterogeneity of EV populations in biological samples. Although flow cytometry would be the ideal technique to do so, the available instruments are in general not equipped to optimally detect the dim light scatter signals generated by submicron-sized particles like EV. Although sideward scatter light and fluorescence are currently used as a threshold signal to identify EV within samples, the forward scatter light (FSC) parameter is often neglected due to the lack of resolution to distinguish EV-related signals from noise. However, after optimization of FSC detection by adjusting the size of the obscuration bar, we recently showed that certain EV-subsets could only be identified based on FSC. This observation made us to further study the possibilities to enhance FSC-detection of submicron-sized particles. By testing differently sized obscuration bars and differently sized pinholes in the focal plane behind the FSC detection lens, we generated a matrix that allowed us to determine which combination resulted in the lowest optical background in terms of numbers of events regarding FSC detection of submicron-sized particles. We found that a combination of an 8-mm obscuration bar and a 200-μm pinhole reduced optical background in a reproducible manner to such extent that it allowed a robust separation of 100-nm polystyrene beads from background signals within the FSC channel, and even allowed thresholding on FSC without the interference of massive background signals when both beads and EV were measured. These technical adaptations thus significantly improved FSC detection of submicron-sized particles and provide an important lead for the further development and design of flow cytometers that aid in detection of submicron-sized particles. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry
Пленум Наукової ради«Українська мова» Українська лексикографія та лексикологія: проблеми, завдання
10–11 листопада 2011року у Ніжинському державному університеты імені Миколи Гоголя відбувся Пленум Наукової ради “Українська мова” Інституту української мови НАН України на тему “Українська лексикографія та лексикологія: проблеми, завдання”
Recovery of extracellular vesicles from human breast milk is influenced by sample collection and vesicle isolation procedures
Extracellular vesicles (EV) in breast milk carry immune relevant proteins and could play an important role in the instruction of the neonatal immune system. To further analyze these EV and to elucidate their function it is important that native populations of EV can be recovered from (stored) breast milk samples in a reproducible fashion. However, the impact of isolation and storage procedures on recovery of breast milk EV has remained underexposed. Here, we aimed to define parameters important for EV recovery from fresh and stored breast milk. To compare various protocols across different donors, breast milk was spiked with a well-defined murine EV population. We found that centrifugation of EV down into density gradients largely improved density-based separation and isolation of EV, compared to floatation up into gradients after high-force pelleting of EV. Using cryo-electron microscopy, we identified different subpopulations of human breast milk EV and a not previously described population of lipid tubules. Additionally, the impact of cold storage on breast milk EV was investigated. We determined that storing unprocessed breast milk at −80°C or 4°C caused death of cells present in breast milk, leading to contamination of the breast milk EV population with storage-induced EV. Here, an alternative method is proposed to store breast milk samples for EV analysis at later time points. The proposed adaptations to the breast milk storage and EV isolation procedures can be applied for EV-based biomarker profiling of breast milk and functional analysis of the role of breast milk EV in the development of the neonatal immune system
Power-Based Droop Control in DC Microgrids Enabling Seamless Disconnection From Upstream Grids
This paper proposes a local power-based droop controller for distributed energy resource converters in dc microgrids that are connected to upstream grids by grid-interface converters. During normal operation, the grid-interface converter imposes the microgrid bus voltage, and the proposed controller allows power flow regulation at distributed energy resource converters\u2019 output. On the other hand, during abnormal operation of the grid-interface converter (e.g., due to faults in the upstream grid), the proposed controller allows bus voltage regulation by droop control. Notably, the controller can autonomously convert from power flow control to droop control, without any need of bus voltage variation detection schemes or communication with other microgrid components, which enables seamless transitions between these two modes of operation. Considering distributed energy resource converters employing the power-based droop control, the operation modes of a single converter and of the whole microgrid are defined and investigated herein. The controller design is also introduced. Furthermore, the power sharing performance of this control approach is analyzed and compared with that of classical droop control. The experimental results from a laboratory-scale dc microgrid prototype are reported to show the final performances of the proposed power-based droop control
Tetraspanin-decorated extracellular vesicle-mimetics as a novel adaptable reference material
Features like small size, low refractive index and polydispersity pose challenges to the currently available detection methods for Extracellular Vesicles (EVs). In addition, the lack of appropriate standards to set up the experimental conditions makes it difficult to compare analyses obtained by different technical approaches. By modifying synthetic nanovesicles with recombinant antigenic regions of EV-enriched tetraspanins, we aimed to construct an EV-mimetic that can be used as a suitable standard for EV analyses. To this end, the sequences of the large extracellular loops of the tetraspanins CD9, CD63 and CD81 were tagged with a target sequence for the biotin ligase BirA, and co-transformed with a BirA expression plasmid into Escherichia coli. GST fusion proteins were then isolated by affinity chromatography and released using thrombin. Biotinylated recombinant tetraspanin-loops were then coupled to (strept)avidin-coated synthetic nanovesicles and analysed and characterised by Dot-blot, Western-blot, Nanoparticle Tracking Analysis, Flow Cytometry and Transmission Electron Microscopy. With this method, we were able to efficiently produce tetraspanin-domain decorated nanovesicles that share biophysical properties with natural EVs, can be detected using specific antibodies against common EV markers such as tetraspanins, and can be used as robust reference materials for detection techniques that are often used in the EV field.This research was supported by grants from Fundación Ramón Areces and Ministerio de Economía y Competitividad (BFU2014-55478-R, REDIEX. SAF2015-71231-REDT, BIO201786500-R) cofounded by FEDER funds. E.L-A. was supported by the European Social Fund, GEIVEX Mobility and Universidad Autónoma de Madrid STS fellow ships,as well as by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No.72214
Human milk extracellular vesicles preserve bronchial epithelial barrier integrity and reduce TLR3‐induced inflammation in vitro
Breast milk is essential for facilitating the growth and development of infants and for providing immune protection against viral infections in the infant's airways. Yet, regulation of inflammation by milk components may be needed to reduce immune pathology. While milk-derived extracellular vesicles (EVs) are bestowed with immunomodulatory capacities, their role in bronchial epithelial barrier function and inflammation has not yet been examined. We hypothesised that during feeding, milk is not only ingested, but aerosols containing milk EVs are inhaled and locally delivered to the infant's airways to suppress aberrant inflammation. A bronchial epithelial model of viral infection was used to explore the direct effect of milk EVs on cellular barrier function and cytokine release during stimulation with a viral dsRNA analogue (Poly I:C). We demonstrate that milk EVs improved the dsRNA-mediated decrease in ionic barrier integrity, limited tight junction reorganisation and reduced inflammatory cytokine production (IL-6, IL-8 and TNF-α). This protective response was EV-mediated, could be successfully titrated and exhibited a time-dependent response. The results indicate that if EV-containing milk aerosols are inhaled during feeding, this may lead to protection of the airway integrity from adverse inflammatory effects
- …