1,819 research outputs found

    Valosin-Containing Protein (VCP) Disease and Familial Alzheimer’s Disease: Contrasts and Overlaps

    Get PDF
    Introduction Contrasts between two entities may be illuminating because of the emphasis on what each is not. Here we describe two proteinopathies producing brain neurodegeneration in mature adults, autosomal dominant valosin-containing protein (VCP) disease and Familial Alzheimer’s disease (FAD) caused by presenillin-1 (PSEN1) mutations, illustrating both contrasting patterns of clinical presentation and known neuropathologic and imaging features, and points of congruence

    MINE: Module Identification in Networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Graphical models of network associations are useful for both visualizing and integrating multiple types of association data. Identifying modules, or groups of functionally related gene products, is an important challenge in analyzing biological networks. However, existing tools to identify modules are insufficient when applied to dense networks of experimentally derived interaction data. To address this problem, we have developed an agglomerative clustering method that is able to identify highly modular sets of gene products within highly interconnected molecular interaction networks.</p> <p>Results</p> <p>MINE outperforms MCODE, CFinder, NEMO, SPICi, and MCL in identifying non-exclusive, high modularity clusters when applied to the <it>C. elegans </it>protein-protein interaction network. The algorithm generally achieves superior geometric accuracy and modularity for annotated functional categories. In comparison with the most closely related algorithm, MCODE, the top clusters identified by MINE are consistently of higher density and MINE is less likely to designate overlapping modules as a single unit. MINE offers a high level of granularity with a small number of adjustable parameters, enabling users to fine-tune cluster results for input networks with differing topological properties.</p> <p>Conclusions</p> <p>MINE was created in response to the challenge of discovering high quality modules of gene products within highly interconnected biological networks. The algorithm allows a high degree of flexibility and user-customisation of results with few adjustable parameters. MINE outperforms several popular clustering algorithms in identifying modules with high modularity and obtains good overall recall and precision of functional annotations in protein-protein interaction networks from both <it>S. cerevisiae </it>and <it>C. elegans</it>.</p

    IBMPFD disease-causing mutant VCP/p97 proteins are targets of autophagic-lysosomal degradation

    Get PDF
    The ubiquitin-proteasome system (UPS) degrades soluble proteins and small aggregates, whereas macroautophagy (autophagy herein) eliminates larger protein aggregates, tangles and even whole organelles in a lysosome-dependent manner. VCP/p97 was implicated in both pathways. VCP/p97 mutations cause a rare multisystem disease called IBMPFD (Inclusion Body Myopathy with Paget's Disease and Frontotemporal Dementia). Here, we studied the role IBMPFD-related mutants of VCP/p97 in autophagy. In contrast with the wild-type VCP/p97 protein or R155C or R191Q mutants, the P137L mutant was aggregate-prone. We showed that, unlike commonly studied R155C or R191Q mutants, the P137L mutant protein stimulated both autophagosome and autolysosome formation. Moreover, P137L mutant protein itself was a substrate of autophagy. Starvation- and mTOR inhibition-induced autophagy led to the degradation of the P137L mutant protein, while preserving the wild-type and functional VCP/p97. Strikingly, similar to the P137L mutant, other IBMPFD-related VCP/p97 mutants, namely R93C and G157R mutants induced autophagosome and autolysosome formation; and G157R mutant formed aggregates that could be cleared by autophagy. Therefore, cellular phenotypes caused by P137L mutant expression were not isolated observations, and some other IBMPFD disease-related VCP/p97 mutations could lead to similar outcomes. Our results indicate that cellular mechanisms leading to IBMPFD disease may be various, and underline the importance of studying different disease-associated mutations in order to better understand human pathologies and tailor mutation-specific treatment strategies

    Effect of early vasopressin vs norepinephrine on kidney failure in patients with septic shock. The VANISH Randomized Clinical Trial

    Get PDF
    IMPORTANCE: Norepinephrine is currently recommended as the first-line vasopressor in septic shock; however, early vasopressin use has been proposed as an alternative. OBJECTIVE: To compare the effect of early vasopressin vs norepinephrine on kidney failure in patients with septic shock. DESIGN, SETTING, AND PARTICIPANTS: A factorial (2×2), double-blind, randomized clinical trial conducted in 18 general adult intensive care units in the United Kingdom between February 2013 and May 2015, enrolling adult patients who had septic shock requiring vasopressors despite fluid resuscitation within a maximum of 6 hours after the onset of shock. INTERVENTIONS: Patients were randomly allocated to vasopressin (titrated up to 0.06 U/min) and hydrocortisone (n = 101), vasopressin and placebo (n = 104), norepinephrine and hydrocortisone (n = 101), or norepinephrine and placebo (n = 103). MAIN OUTCOMES AND MEASURES: The primary outcome was kidney failure-free days during the 28-day period after randomization, measured as (1) the proportion of patients who never developed kidney failure and (2) median number of days alive and free of kidney failure for patients who did not survive, who experienced kidney failure, or both. Rates of renal replacement therapy, mortality, and serious adverse events were secondary outcomes. RESULTS: A total of 409 patients (median age, 66 years; men, 58.2%) were included in the study, with a median time to study drug administration of 3.5 hours after diagnosis of shock. The number of survivors who never developed kidney failure was 94 of 165 patients (57.0%) in the vasopressin group and 93 of 157 patients (59.2%) in the norepinephrine group (difference, -2.3% [95% CI, -13.0% to 8.5%]). The median number of kidney failure-free days for patients who did not survive, who experienced kidney failure, or both was 9 days (interquartile range [IQR], 1 to -24) in the vasopressin group and 13 days (IQR, 1 to -25) in the norepinephrine group (difference, -4 days [95% CI, -11 to 5]). There was less use of renal replacement therapy in the vasopressin group than in the norepinephrine group (25.4% for vasopressin vs 35.3% for norepinephrine; difference, -9.9% [95% CI, -19.3% to -0.6%]). There was no significant difference in mortality rates between groups. In total, 22 of 205 patients (10.7%) had a serious adverse event in the vasopressin group vs 17 of 204 patients (8.3%) in the norepinephrine group (difference, 2.5% [95% CI, -3.3% to 8.2%]). CONCLUSIONS AND RELEVANCE: Among adults with septic shock, the early use of vasopressin compared with norepinephrine did not improve the number of kidney failure-free days. Although these findings do not support the use of vasopressin to replace norepinephrine as initial treatment in this situation, the confidence interval included a potential clinically important benefit for vasopressin, and larger trials may be warranted to assess this further. TRIAL REGISTRATION: clinicaltrials.gov Identifier: ISRCTN 20769191

    Interleukin-4 and 13 concentrations in infants at risk to develop Bronchopulmonary Dysplasia

    Get PDF
    BACKGROUND: An exaggerated inflammatory response occurs in the first few days of life in infants who subsequently develop bronchopulmonary dysplasia (BPD). The increase of inflammatory cytokines in many disease processes is generally balanced by a rise in anti-inflammatory cytokines. Interleukin-4 (IL-4) and interleukin-13 (IL-13) have been shown to inhibit production of several inflammatory cytokines important in the development of BPD. METHODS: We sought to determine if a correlation exists between the presence or absence of IL-4 and IL-13 in tracheal aspirates (TA) during the first 3 weeks of life and the development of BPD in premature infants. Serial TAs were prospectively obtained from 36 very low birth weight infants and IL-4 and IL-13 concentrations were determined by ELISA. RESULTS: Infants who developed BPD (n = 19) were less mature (25.3 ± 0.02 wks vs. 27.8 ± 0.05 wks; p < 0.001), and had lower birth weights (739 ± 27 g vs.1052 ± 41 g; p < 0.001). IL-4 and IL-13 were detectable in only 27 of 132 and 9 of 132 samples assayed respectively. Furthermore, the levels detected for IL-4 and IL-13 were very low and did not correlate with the development of BPD. CONCLUSIONS: TA concentrations of IL-4 and IL-13 do not increase significantly during acute lung injury in premature infants

    Jerarca: Efficient Analysis of Complex Networks Using Hierarchical Clustering

    Get PDF
    Background: How to extract useful information from complex biological networks is a major goal in many fields, especially in genomics and proteomics. We have shown in several works that iterative hierarchical clustering, as implemented in the UVCluster program, is a powerful tool to analyze many of those networks. However, the amount of computation time required to perform UVCluster analyses imposed significant limitations to its use. Methodology/Principal Findings: We describe the suite Jerarca, designed to efficiently convert networks of interacting units into dendrograms by means of iterative hierarchical clustering. Jerarca is divided into three main sections. First, weighted distances among units are computed using up to three different approaches: a more efficient version of UVCluster and two new, related algorithms called RCluster and SCluster. Second, Jerarca builds dendrograms based on those distances, using well-known phylogenetic algorithms, such as UPGMA or Neighbor-Joining. Finally, Jerarca provides optimal partitions of the trees using statistical criteria based on the distribution of intra- and intercluster connections. Outputs compatible with the phylogenetic software MEGA and the Cytoscape package are generated, allowing the results to be easily visualized. Conclusions/Significance: The four main advantages of Jerarca in respect to UVCluster are: 1) Improved speed of a novel UVCluster algorithm; 2) Additional, alternative strategies to perform iterative hierarchical clustering; 3) Automatic evaluatio

    Variable Incidence of Spiroplasma Infections in Natural Populations of Drosophila Species

    Get PDF
    Spiroplasma is widespread as a heritable bacterial symbiont in insects and some other invertebrates, in which it sometimes acts as a male-killer and causes female-biased sex ratios in hosts. Besides Wolbachia, it is the only heritable bacterium known from Drosophila, having been found in 16 of over 200 Drosophila species screened, based on samples of one or few individuals per species. To assess the extent to which Spiroplasma infection varies within and among species of Drosophila, intensive sampling consisting of 50–281 individuals per species was conducted for natural populations of 19 Drosophila species. Infection rates varied among species and among populations of the same species, and 12 of 19 species tested negative for all individuals. Spiroplasma infection never was fixed, and the highest infection rates were 60% in certain populations of D. hydei and 85% in certain populations of D. mojavensis. In infected species, infection rates were similar for males and females, indicating that these Spiroplasma infections do not confer a strong male-killing effect. These findings suggest that Spiroplasma has other effects on hosts that allow it to persist, and that environmental or host variation affects transmission or persistence leading to differences among populations in infection frequencies

    Efficient and accurate greedy search methods for mining functional modules in protein interaction networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most computational algorithms mainly focus on detecting highly connected subgraphs in PPI networks as protein complexes but ignore their inherent organization. Furthermore, many of these algorithms are computationally expensive. However, recent analysis indicates that experimentally detected protein complexes generally contain Core/attachment structures.</p> <p>Methods</p> <p>In this paper, a Greedy Search Method based on Core-Attachment structure (GSM-CA) is proposed. The GSM-CA method detects densely connected regions in large protein-protein interaction networks based on the edge weight and two criteria for determining core nodes and attachment nodes. The GSM-CA method improves the prediction accuracy compared to other similar module detection approaches, however it is computationally expensive. Many module detection approaches are based on the traditional hierarchical methods, which is also computationally inefficient because the hierarchical tree structure produced by these approaches cannot provide adequate information to identify whether a network belongs to a module structure or not. In order to speed up the computational process, the Greedy Search Method based on Fast Clustering (GSM-FC) is proposed in this work. The edge weight based GSM-FC method uses a greedy procedure to traverse all edges just once to separate the network into the suitable set of modules.</p> <p>Results</p> <p>The proposed methods are applied to the protein interaction network of S. cerevisiae. Experimental results indicate that many significant functional modules are detected, most of which match the known complexes. Results also demonstrate that the GSM-FC algorithm is faster and more accurate as compared to other competing algorithms.</p> <p>Conclusions</p> <p>Based on the new edge weight definition, the proposed algorithm takes advantages of the greedy search procedure to separate the network into the suitable set of modules. Experimental analysis shows that the identified modules are statistically significant. The algorithm can reduce the computational time significantly while keeping high prediction accuracy.</p

    Evolutionary dynamics of residual disease in human glioblastoma.

    Get PDF
    Background Glioblastoma is the most common and aggressive adult brain malignancy against which conventional surgery and chemoradiation provide limited benefit. Even when a good treatment response is obtained, recurrence inevitably occurs either locally (∼80%) or distally (∼20%), driven by cancer clones that are often genomically distinct from those in the primary tumour. Glioblastoma cells display a characteristic infiltrative phenotype, invading the surrounding tissue and often spreading across the whole brain. Cancer cells responsible for relapse can reside in two compartments of residual disease that are left behind after treatment: the infiltrated normal brain parenchyma and the sub-ventricular zone. However, these two sources of residual disease in glioblastoma are understudied because of the difficulty in sampling these regions during surgery.Patient and methods Here, we present the results of whole-exome sequencing of 69 multi-region samples collected using fluorescence-guided resection from 11 patients, including the infiltrating tumour margin and the sub-ventricular zone for each patient, as well as matched blood. We used a phylogenomic approach to dissect the spatio-temporal evolution of each tumour and unveil the relation between residual disease and the main tumour mass. We also analysed two patients with paired primary-recurrence samples with matched residual disease.Results Our results suggest that infiltrative subclones can arise early during tumour growth in a subset of patients. After treatment, the infiltrative subclones may seed the growth of a recurrent tumour, thus representing the 'missing link' between the primary tumour and recurrent disease.Conclusions These results are consistent with recognised clinical phenotypic behaviour and suggest that more specific therapeutic targeting of cells in the infiltrated brain parenchyma may improve patient's outcome
    corecore