2,374 research outputs found

    Grain quality and end use of Kazakh wheat varieties

    Get PDF

    Climate Dynamics: A Network-Based Approach for the Analysis of Global Precipitation

    Get PDF
    Precipitation is one of the most important meteorological variables for defining the climate dynamics, but the spatial patterns of precipitation have not been fully investigated yet. The complex network theory, which provides a robust tool to investigate the statistical interdependence of many interacting elements, is used here to analyze the spatial dynamics of annual precipitation over seventy years (1941-2010). The precipitation network is built associating a node to a geographical region, which has a temporal distribution of precipitation, and identifying possible links among nodes through the correlation function. The precipitation network reveals significant spatial variability with barely connected regions, as Eastern China and Japan, and highly connected regions, such as the African Sahel, Eastern Australia and, to a lesser extent, Northern Europe. Sahel and Eastern Australia are remarkably dry regions, where low amounts of rainfall are uniformly distributed on continental scales and small-scale extreme events are rare. As a consequence, the precipitation gradient is low, making these regions well connected on a large spatial scale. On the contrary, the Asiatic South-East is often reached by extreme events such as monsoons, tropical cyclones and heat waves, which can all contribute to reduce the correlation to the short-range scale only. Some patterns emerging between mid-latitude and tropical regions suggest a possible impact of the propagation of planetary waves on precipitation at a global scale. Other links can be qualitatively associated to the atmospheric and oceanic circulation. To analyze the sensitivity of the network to the physical closeness of the nodes, short-term connections are broken. The African Sahel, Eastern Australia and Northern Europe regions again appear as the supernodes of the network, confirming furthermore their long-range connection structure. Almost all North-American and Asian nodes vanish, revealing that extreme events can enhance high precipitation gradients, leading to a systematic absence of long-range patterns

    Conformal invariance in two-dimensional turbulence

    Full text link
    Simplicity of fundamental physical laws manifests itself in fundamental symmetries. While systems with an infinity of strongly interacting degrees of freedom (in particle physics and critical phenomena) are hard to describe, they often demonstrate symmetries, in particular scale invariance. In two dimensions (2d) locality often promotes scale invariance to a wider class of conformal transformations which allow for nonuniform re-scaling. Conformal invariance allows a thorough classification of universality classes of critical phenomena in 2d. Is there conformal invariance in 2d turbulence, a paradigmatic example of strongly-interacting non-equilibrium system? Here, using numerical experiment, we show that some features of 2d inverse turbulent cascade display conformal invariance. We observe that the statistics of vorticity clusters is remarkably close to that of critical percolation, one of the simplest universality classes of critical phenomena. These results represent a new step in the unification of 2d physics within the framework of conformal symmetry.Comment: 10 pages, 5 figures, 1 tabl

    Insights Into the Structure-Function Relationships of Dimeric C3d Fragments

    Get PDF
    \ua9 Copyright \ua9 2021 Wahid, Dunphy, Macpherson, Gibson, Kulik, Whale, Back, Hallam, Alkhawaja, Martin, Meschede, Laabei, Lawson, Holers, Watts, Crennell, Harris, Marchbank and van den Elsen.Cleavage of C3 to C3a and C3b plays a central role in the generation of complement-mediated defences. Although the thioester-mediated surface deposition of C3b has been well-studied, fluid phase dimers of C3 fragments remain largely unexplored. Here we show C3 cleavage results in the spontaneous formation of C3b dimers and present the first X-ray crystal structure of a disulphide-linked human C3d dimer. Binding studies reveal these dimers are capable of crosslinking complement receptor 2 and preliminary cell-based analyses suggest they could modulate B cell activation to influence tolerogenic pathways. Altogether, insights into the physiologically-relevant functions of C3d(g) dimers gained from our findings will pave the way to enhancing our understanding surrounding the importance of complement in the fluid phase and could inform the design of novel therapies for immune system disorders in the future

    Quantum Symmetries and Marginal Deformations

    Full text link
    We study the symmetries of the N=1 exactly marginal deformations of N=4 Super Yang-Mills theory. For generic values of the parameters, these deformations are known to break the SU(3) part of the R-symmetry group down to a discrete subgroup. However, a closer look from the perspective of quantum groups reveals that the Lagrangian is in fact invariant under a certain Hopf algebra which is a non-standard quantum deformation of the algebra of functions on SU(3). Our discussion is motivated by the desire to better understand why these theories have significant differences from N=4 SYM regarding the planar integrability (or rather lack thereof) of the spin chains encoding their spectrum. However, our construction works at the level of the classical Lagrangian, without relying on the language of spin chains. Our approach might eventually provide a better understanding of the finiteness properties of these theories as well as help in the construction of their AdS/CFT duals.Comment: 1+40 pages. v2: minor clarifications and references added. v3: Added an appendix, fixed minor typo

    Pyrite-induced hydroxyl radical formation and its effect on nucleic acids

    Get PDF
    BACKGROUND: Pyrite, the most abundant metal sulphide on Earth, is known to spontaneously form hydrogen peroxide when exposed to water. In this study the hypothesis that pyrite-induced hydrogen peroxide is transformed to hydroxyl radicals is tested. RESULTS: Using a combination of electron spin resonance (ESR) spin-trapping techniques and scavenging reactions involving nucleic acids, the formation of hydroxyl radicals in pyrite/aqueous suspensions is demonstrated. The addition of EDTA to pyrite slurries inhibits the hydrogen peroxide-to-hydroxyl radical conversion, but does not inhibit the formation of hydrogen peroxide. Given the stability of EDTA chelation with both ferrous and ferric iron, this suggests that the addition of the EDTA prevents the transformation by chelation of dissolved iron species. CONCLUSION: While the exact mechanism or mechanisms of the hydrogen peroxide-to-hydroxyl radical conversion cannot be resolved on the basis of the experiments reported in this study, it is clear that the pyrite surface promotes the reaction. The formation of hydroxyl radicals is significant because they react nearly instantaneously with most organic molecules. This suggests that the presence of pyrite in natural, engineered, or physiological aqueous systems may induce the transformation of a wide range of organic molecules. This finding has implications for the role pyrite may play in aquatic environments and raises the question whether inhalation of pyrite dust contributes to the development of lung diseases

    Cardiovascular, endocrine and behavioural responses to suckling and permanent separation in goats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Suckling can be a peaceful or vulnerable event for goats and kids, whereas, separation is suggested as stressful. The aim of this study was to investigate physiology and behaviour in these two different situations in dairy goats.</p> <p>Methods</p> <p>Four studies were performed with seven goats kept with their first-born kid in individual boxes. The goats were videotaped and heart rate and arterial blood pressure were recorded every minute by telemetry from parturition until 24 hours after separation. One to two days after parturition, Study 1 was performed with analyses of heart rate and blood pressure around a suckling. In Study 2, performed 3-5 days after parturition, blood sampling was done before, during and after suckling. Study 3 was performed 4-6 days post partum, with blood sampling before and after a permanent goat and kid separation. In addition, vocalisations were recorded after separation. Blood samples were obtained from a jugular vein catheter and analysed for plasma cortisol, β-endorphin, oxytocin, and vasopressin concentrations. Study 4 was performed during the first (N1) and second nights (N2) after parturition and the nights after Study 2 (N3) and 3 (N4). Heart rate, blood pressure and time spent lying down were recorded.</p> <p>Results</p> <p>The kids suckled 2 ± 0.2 times per hour and each suckling bout lasted 43 ± 15 s. In Study 1, heart rate and blood pressure did not change significantly during undisturbed suckling. In Study 2, plasma cortisol (P ≤ 0.05 during suckling and P ≤ 0.01 five minutes after suckling) and β-endorphin (P ≤ 0.05) concentrations increased during suckling, but oxytocin and vasopressin concentrations did not change. In Study 3, the goats and kids vocalised intensively during the first 20 minutes after separation, but the physiological variables were not affected. In Study 4, heart rate and arterial blood pressure declined gradually after parturition and were lowest during N4 (P ≤ 0.05) when the goats spent longer time lying down than during earlier nights (P ≤ 0.01 during N1 and N3 and P ≤ 0.05 during N2).</p> <p>Conclusions</p> <p>Suckling elevated plasma cortisol and β-endorphin concentrations in the goats. The intensive vocalisation in the goats after separation, earlier suggested to indicate stress, was not accompanied by cardiovascular or endocrine responses.</p

    Prime movers : mechanochemistry of mitotic kinesins

    Get PDF
    Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation

    Search for High Mass Photon Pairs in p-pbar --> gamma-gamma-jet-jet Events at sqrt(s)=1.8 TeV

    Get PDF
    A search has been carried out for events in the channel p-barp --> gamma gamma jet jet. Such a signature can characterize the production of a non-standard Higgs boson together with a W or Z boson. We refer to this non-standard Higgs, having standard model couplings to vector bosons but no coupling to fermions, as a "bosonic Higgs." With the requirement of two high transverse energy photons and two jets, the diphoton mass (m(gamma gamma)) distribution is consistent with expected background. A 90(95)% C.L. upper limit on the cross section as a function of mass is calculated, ranging from 0.60(0.80) pb for m(gamma gamma) = 65 GeV/c^2 to 0.26(0.34) pb for m(gamma gamma) = 150 GeV/c^2, corresponding to a 95% C.L. lower limit on the mass of a bosonic Higgs of 78.5 GeV/c^2.Comment: 9 pages, 3 figures. Replacement has new H->gamma gamma branching ratios and corresponding new mass limit
    corecore