403 research outputs found

    Pattern scaling using ClimGen: monthly-resolution future climate scenarios including changes in the variability of precipitation

    Get PDF
    Development, testing and example applications of the pattern-scaling approach for generating future climate change projections are reported here, with a focus on a particular software application called “ClimGen”. A number of innovations have been implemented, including using exponential and logistic functions of global-mean temperature to represent changes in local precipitation and cloud cover, and interpolation from climate model grids to a finer grid while taking into account land-sea contrasts in the climate change patterns. Of particular significance is a new approach for incorporating changes in the inter-annual variability of monthly precipitation simulated by climate models. This is achieved by diagnosing simulated changes in the shape of the gamma distribution of monthly precipitation totals, applying the pattern-scaling approach to estimate changes in the shape parameter under a future scenario, and then perturbing sequences of observed precipitation anomalies so that their distribution changes according to the projected change in the shape parameter. The approach cannot represent changes to the structure of climate timeseries (e.g. changed autocorrelation or teleconnection patterns) were they to occur, but is shown here to be more successful at representing changes in low precipitation extremes than previous pattern-scaling methods

    The sampling theory of neutral alleles and an urn model in population genetics

    Full text link
    The behaviour of a Pólya-like urn which generates Ewens' sampling formula in population genetics is investigated. Connections are made with work of Watterson and Kingman and to the Poisson-Dirichlet distribution. The order in which novel types occur in the urn is shown to parallel the age distribution of the infinitely many alleles diffusion model and consequences of this property are explored. Finally the urn process is related to Kingman's coalescent with mutation to provide a rigorous basis for this parallel.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46946/1/285_2004_Article_BF00276386.pd

    Recombination facilitates neofunctionalization of duplicate genes via originalization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recently originalization was proposed to be an effective way of duplicate-gene preservation, in which recombination provokes the high frequency of original (or wild-type) allele on both duplicated loci. Because the high frequency of wild-type allele might drive the arising and accumulating of advantageous mutation, it is hypothesized that recombination might enlarge the probability of neofunctionalization (P<sub>neo</sub>) of duplicate genes. In this article this hypothesis has been tested theoretically.</p> <p>Results</p> <p>Results show that through originalization recombination might not only shorten mean time to neofunctionalizaiton, but also enlarge P<sub>neo</sub>.</p> <p>Conclusions</p> <p>Therefore, recombination might facilitate neofunctionalization via originalization. Several extensive applications of these results on genomic evolution have been discussed: 1. Time to nonfunctionalization can be much longer than a few million generations expected before; 2. Homogenization on duplicated loci results from not only gene conversion, but also originalization; 3. Although the rate of advantageous mutation is much small compared with that of degenerative mutation, P<sub>neo </sub>cannot be expected to be small.</p

    Multichromosomal median and halving problems under different genomic distances

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome median and genome halving are combinatorial optimization problems that aim at reconstructing ancestral genomes as well as the evolutionary events leading from the ancestor to extant species. Exploring complexity issues is a first step towards devising efficient algorithms. The complexity of the median problem for unichromosomal genomes (permutations) has been settled for both the breakpoint distance and the reversal distance. Although the multichromosomal case has often been assumed to be a simple generalization of the unichromosomal case, it is also a relaxation so that complexity in this context does not follow from existing results, and is open for all distances.</p> <p>Results</p> <p>We settle here the complexity of several genome median and halving problems, including a surprising polynomial result for the breakpoint median and guided halving problems in genomes with circular and linear chromosomes, showing that the multichromosomal problem is actually easier than the unichromosomal problem. Still other variants of these problems are NP-complete, including the DCJ double distance problem, previously mentioned as an open question. We list the remaining open problems.</p> <p>Conclusion</p> <p>This theoretical study clears up a wide swathe of the algorithmical study of genome rearrangements with multiple multichromosomal genomes.</p

    Pervasive Hitchhiking at Coding and Regulatory Sites in Humans

    Get PDF
    Much effort and interest have focused on assessing the importance of natural selection, particularly positive natural selection, in shaping the human genome. Although scans for positive selection have identified candidate loci that may be associated with positive selection in humans, such scans do not indicate whether adaptation is frequent in general in humans. Studies based on the reasoning of the MacDonald–Kreitman test, which, in principle, can be used to evaluate the extent of positive selection, suggested that adaptation is detectable in the human genome but that it is less common than in Drosophila or Escherichia coli. Both positive and purifying natural selection at functional sites should affect levels and patterns of polymorphism at linked nonfunctional sites. Here, we search for these effects by analyzing patterns of neutral polymorphism in humans in relation to the rates of recombination, functional density, and functional divergence with chimpanzees. We find that the levels of neutral polymorphism are lower in the regions of lower recombination and in the regions of higher functional density or divergence. These correlations persist after controlling for the variation in GC content, density of simple repeats, selective constraint, mutation rate, and depth of sequencing coverage. We argue that these results are most plausibly explained by the effects of natural selection at functional sites—either recurrent selective sweeps or background selection—on the levels of linked neutral polymorphism. Natural selection at both coding and regulatory sites appears to affect linked neutral polymorphism, reducing neutral polymorphism by 6% genome-wide and by 11% in the gene-rich half of the human genome. These findings suggest that the effects of natural selection at linked sites cannot be ignored in the study of neutral human polymorphism

    Interactions of Cathinone NPS with Human Transporters and Receptors in Transfected Cells

    Get PDF
    Pharmacological assays carried out in transfected cells have been very useful for describing the mechanism of action of cathinone new psychoactive substances (NPS). These in vitro characterizations provide fast and reliable information on psychoactive substances soon after they emerge for recreational use. Well-investigated comparator compounds, such as methamphetamine, 3,4-methylenedioxymethamphetamine, cocaine, and lysergic acid diethylamide, should always be included in the characterization to enhance the translation of the in vitro data into clinically useful information. We classified cathinone NPS according to their pharmacology at monoamine transporters and receptors. Cathinone NPS are monoamine uptake inhibitors and most induce transporter-mediated monoamine efflux with weak to no activity at pre- or postsynaptic receptors. Cathinones with a nitrogen-containing pyrrolidine ring emerged as NPS that are extremely potent transporter inhibitors but not monoamine releasers. Cathinones exhibit clinically relevant differences in relative potencies at serotonin vs. dopamine transporters. Additionally, cathinone NPS have more dopaminergic vs. serotonergic properties compared with their non-β-keto amphetamine analogs, suggesting more stimulant and reinforcing properties. In conclusion, in vitro pharmacological assays in heterologous expression systems help to predict the psychoactive and toxicological effects of NPS

    Genetic Differentiation of the Western Capercaillie Highlights the Importance of South-Eastern Europe for Understanding the Species Phylogeography

    Get PDF
    The Western Capercaillie (Tetrao urogallus L.) is a grouse species of open boreal or high altitude forests of Eurasia. It is endangered throughout most mountain range habitat areas in Europe. Two major genetically identifiable lineages of Western Capercaillie have been described to date: the southern lineage at the species' southernmost range of distribution in Europe, and the boreal lineage. We address the question of genetic differentiation of capercaillie populations from the Rhodope and Rila Mountains in Bulgaria, across the Dinaric Mountains to the Slovenian Alps. The two lineages' contact zone and resulting conservation strategies in this so-far understudied area of distribution have not been previously determined. The results of analysis of mitochondrial DNA control region sequences of 319 samples from the studied populations show that Alpine populations were composed exclusively of boreal lineage; Dinaric populations of both, but predominantly (96%) of boreal lineage; and Rhodope-Rila populations predominantly (>90%) of southern lineage individuals. The Bulgarian mountains were identified as the core area of the southern lineage, and the Dinaric Mountains as the western contact zone between both lineages in the Balkans. Bulgarian populations appeared genetically distinct from Alpine and Dinaric populations and exhibited characteristics of a long-term stationary population, suggesting that they should be considered as a glacial relict and probably a distinct subspecies. Although all of the studied populations suffered a decline in the past, the significantly lower level of genetic diversity when compared with the neighbouring Alpine and Bulgarian populations suggests that the isolated Dinaric capercaillie is particularly vulnerable to continuing population decline. The results are discussed in the context of conservation of the species in the Balkans, its principal threats and legal protection status. Potential conservation strategies should consider the existence of the two lineages and their vulnerable Dinaric contact zone and support the specificities of the populations
    corecore