4,096 research outputs found

    Geographic distribution of tree species diversity of the United States reveals positive association between biodiversity and site productivity

    Get PDF
    With the loss of species worldwide due to anthropogenic factors, especially in forested ecosystems, it has become more urgent than ever to understand the biodiversity-ecosystem functioning relationship (BEFR). BEFR research in forested ecosystems is very limited and thus studies that incorporate greater geographic coverage and structural complexity are much needed. Here, I compiled ground-measured data from 436,177 Forest Inventory and Analysis (FIA) plots of every U.S. state except Hawaii to map current basal area, site productivity, and tree species diversity across the United States. Based on these point-data maps, I investigated the relationship between forest productivity and tree species diversity. Out of 15 forest types, 13 show a positive association between diversity and productivity, and only two show insignificant or negative relationships. The large number of ground-measured plots, as well as the magnitude of geographic scale, rendered overwhelming evidence in support of a positive tree species diversity-timber productivity relationship. This empirical evidence provides insights to forest management and biological conservation that are of a much broader applicability than controlled experiments in terms of both forest type and geographic scale. The findings imply that timber productivity across the United States may be impaired by the loss of species in forested ecosystems, and that biological conservation, due to its potential benefits on maintaining productivity, can have profound impacts on the availability of selected services from forested ecosystems

    Large-Scale Forest Inventories Of The United States And China Reveal Positive Effects Of Biodiversity On Productivity

    Get PDF
    Background With the loss of species worldwide due to anthropogenic factors, especially in forested ecosystems, it has become more urgent than ever to understand the biodiversity-ecosystem functioning relationship (BEFR). BEFR research in forested ecosystems is very limited and thus studies that incorporate greater geographic coverage and structural complexity are needed. Methods We compiled ground-measured data from approx. one half million forest inventory sample plots across the contiguous United States, Alaska, and northeastern China to map tree species richness, forest stocking, and productivity at a continental scale. Based on these data, we investigated the relationship between forest productivity and tree species diversity, using a multiple regression analysis and a non-parametric approach to account for spatial autocorrelation. Results In general, forests in the eastern United States consisted of more tree species than any other regions in the country. The highest forest stocking values over the entire study area were concentrated in the western United States and Central Appalachia. Overall, 96.4 % of sample plots (477,281) showed a significant positive effect of species richness on site productivity, and only 3.6 % (17,349) had an insignificant or negative effect. Conclusions The large number of ground-measured plots, as well as the magnitude of geographic scale, rendered overwhelming evidence in support of a positive BEFR. This empirical evidence provides insights to forest management and biological conservation across different types of forested ecosystems. Forest timber productivity may be impaired by the loss of species in forests, and biological conservation, due to its potential benefits on maintaining species richness and productivity, can have profound impacts on the functioning and services of forested ecosystems

    NASA Space Rocket Logistics Challenges

    Get PDF
    The Space Launch System (SLS) is the new NASA heavy lift launch vehicle and is scheduled for its first mission in 2017. The goal of the first mission, which will be uncrewed, is to demonstrate the integrated system performance of the SLS rocket and spacecraft before a crewed flight in 2021. SLS has many of the same logistics challenges as any other large scale program. Common logistics concerns for SLS include integration of discreet programs geographically separated, multiple prime contractors with distinct and different goals, schedule pressures and funding constraints. However, SLS also faces unique challenges. The new program is a confluence of new hardware and heritage, with heritage hardware constituting seventy-five percent of the program. This unique approach to design makes logistics concerns such as commonality especially problematic. Additionally, a very low manifest rate of one flight every four years makes logistics comparatively expensive. That, along with the SLS architecture being developed using a block upgrade evolutionary approach, exacerbates long-range planning for supportability considerations. These common and unique logistics challenges must be clearly identified and tackled to allow SLS to have a successful program. This paper will address the common and unique challenges facing the SLS programs, along with the analysis and decisions the NASA Logistics engineers are making to mitigate the threats posed by each

    Three Bosons in One Dimension with Short Range Interactions I: Zero Range Potentials

    Full text link
    We consider the three-boson problem with ÎŽ\delta-function interactions in one spatial dimension. Three different approaches are used to calculate the phase shifts, which we interpret in the context of the effective range expansion, for the scattering of one free particle a off of a bound pair. We first follow a procedure outlined by McGuire in order to obtain an analytic expression for the desired S-matrix element. This result is then compared to a variational calculation in the adiabatic hyperspherical representation, and to a numerical solution to the momentum space Faddeev equations. We find excellent agreement with the exact phase shifts, and comment on some of the important features in the scattering and bound-state sectors. In particular, we find that the 1+2 scattering length is divergent, marking the presence of a zero-energy resonance which appears as a feature when the pair-wise interactions are short-range. Finally, we consider the introduction of a three-body interaction, and comment on the cutoff dependence of the coupling.Comment: 9 figures, 2 table

    A computerized intervention to promote colorectal cancer screening for underserved populations: Theoretical background and algorithm development

    Get PDF
    Objective The aim of this exploratory study was to assess factors deemed by patients as “important” as they planned and considered undergoing colorectal cancer (CRC) screening, and to use this data to design a computer-delivered intervention to promote screening. Methods Fifty participants 50 years or older, not up-to-date with current recommended CRC screening guidelines, were recruited from a primary care clinic. A semi-structured interview focused on aspects of preparing for colorectal cancer screening was administered; after transcription, researchers used triangulation and consensus to identify relevant themes and concepts. Results Four main themes were identified that dealt with issues important for both FOBT and colonoscopy planning: personal concerns, reminders, communication with healthcare providers and obtaining test results. FOBT specific themes included: sample collection and return. For colonoscopy screening, themes included: scheduling, intervention questions, colonoscopy preparation, and transportation. These can be classified as barrier, process and accessory themes. The developed computer-administered implementation intentions algorithm addressed all the identified concerns in a planned and sequential manner, in order to facilitate planning for CRC screening. Conclusions The results of this study suggest that appropriate reminders, explanations of procedures, and patient understanding of temporary life disruptions, help patients develop and accept a detailed screening plan

    Quantifying ice cliff evolution with multi-temporal point clouds on the debris-covered Khumbu Glacier, Nepal

    Get PDF
    Measurements of glacier ice cliff evolution are sparse, but where they do exist, they indicate that such areas of exposed ice contribute a disproportionate amount of melt to the glacier ablation budget. We used Structure from Motion photogrammetry with Multi-View Stereo to derive 3-D point clouds for nine ice cliffs on Khumbu Glacier, Nepal (in November 2015, May 2016 and October 2016). By differencing these clouds, we could quantify the magnitude, seasonality and spatial variability of ice cliff retreat. Mean retreat rates of 0.30–1.49 cm d−1 were observed during the winter interval (November 2015–May 2016) and 0.74–5.18 cm d−1 were observed during the summer (May 2016–October 2016). Four ice cliffs, which all featured supraglacial ponds, persisted over the full study period. In contrast, ice cliffs without a pond or with a steep back-slope degraded over the same period. The rate of thermo-erosional undercutting was over double that of subaerial retreat. Overall, 3-D topographic differencing allowed an improved process-based understanding of cliff evolution and cliff-pond coupling, which will become increasingly important for monitoring and modelling the evolution of thinning debris-covered glaciers

    Developed trigger mechanisms to improve crush force efficiency of aluminium tubes

    Get PDF
    This paper aims to investigate the effect of a trigger mechanism on the crush force efficiency of aluminium tubular absorbers. Various trigger mechanisms such as cut-out holes, circumferential notch and end-fillet, were studied using the validated numerical model. Initially, tubes made of aluminium displayed better crashworthiness behaviour when compared with steel tubes based on numerical and experimental results. Then the trigger mechanism consisting of three cut-out holes was found more efficient than the ones with an end fillet and a circumferential notch based on a comparative study. According to these results, the developed trigger mechanisms have a significant change in crashworthiness performance of tubular absorbers. Crush force efficiency was doubled with the help of this trigger mechanism while stroke efficiency and specific energy absorptions were reduced by 4% and 15% respectively

    NASA Space Rocket Logistics Challenges

    Get PDF
    The Space Launch System (SLS) is the new NASA heavy lift launch vehicle in development and is scheduled for its first mission in 2017. SLS has many of the same logistics challenges as any other large scale program. However, SLS also faces unique challenges. This presentation will address the SLS challenges, along with the analysis and decisions to mitigate the threats posed by each
    • 

    corecore