1,646 research outputs found

    Evaluation of vaccination strategies for SIR epidemics on random networks incorporating household structure

    Get PDF
    This paper is concerned with the analysis of vaccination strategies in a stochastic SIR (susceptible → infected → removed) model for the spread of an epidemic amongst a population of individuals with a random network of social contacts that is also partitioned into households. Under various vaccine action models, we consider both household-based vaccination schemes, in which the way in which individuals are chosen for vaccination depends on the size of the households in which they reside, and acquaintance vaccination, which targets individuals of high degree in the social network. For both types of vaccination scheme, assuming a large population with few initial infectives, we derive a threshold parameter which determines whether or not a large outbreak can occur and also the probability and fraction of the population infected by such an outbreak. The performance of these schemes is studied numerically, focusing on the influence of the household size distribution and the degree distribution of the social network. We find that acquaintance vaccination can significantly outperform the best household-based scheme if the degree distribution of the social network is heavy-tailed. For household-based schemes, when the vaccine coverage is insufficient to prevent a major outbreak and the vaccine is imperfect, we find situations in which both the probability and size of a major outbreak under the scheme which minimises the threshold parameter are \emph{larger} than in the scheme which maximises the threshold parameter

    Detection of Large Scale Structure in a B<17m Galaxy Redshift Survey

    Get PDF
    We report on results from the Durham/UKST Galaxy Redshift Survey where we have found large scale ``cellular'' features in the galaxy distribution. These have spatial 2-point correlation function power significantly in excess of the predictions of the standard cold dark matter cosmological model1, supporting the previous observational results from the APM survey2,3. At smaller scales, the 1-D pairwise galaxy velocity dispersion is measured to be 387+96−62 kms−1 which is also inconsistent with the prediction of the standard cold dark matter model1. Finally, the survey has produced the most significant detection yet of large scale redshift space distortions due to dynamical infall of galaxies4. An estimate of Ω0.6/b=0.55±0.12 is obtained which is consistent either with a low density Universe or a critical density Universe where galaxies are biased tracers of the mass.preprin

    Improved distances and ages for stars common to TGAS and RAVE

    Get PDF
    ABSTRACT We combine parallaxes from the first Gaia data release with the spectrophotometric distance estimation framework for stars in the fifth RAVE survey data release. The combined distance estimates are more accurate than either determination in isolation – uncertainties are on average two times smaller than for RAVE-only distances (three times smaller for dwarfs), and 1.4 times smaller than TGAS parallax uncertainties (two times smaller for giants). We are also able to compare the estimates from spectrophotometry to those from Gaia, and use this to assess the reliability of both catalogues and improve our distance estimates.We find that the distances to the lowest log g stars are, on average, overestimated and caution that they may not be reliable. We also find that it is likely that the Gaia random uncertainties are smaller than the reported values. As a byproduct we derive ages for the RAVE stars, many with relative uncertainties less than 20 percent. These results for 219 566 RAVE sources have been made publicly available, and we encourage their use for studies that combine the radial velocities provided by RAVE with the proper motions provided by Gaia. A sample that we believe to be reliable can be found by taking only the stars with the flag notification ‘flag_any=0’. Key words: Galaxy: fundamental parameters – methods: statistical –Funding for the research in this study came from the Swedish National Space Board, the Royal Physiographic Society in Lund, and some of the computations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at Lunarc under project SNIC 2016/4-17. Funding for RAVE has been provided by: the Australian Astronomical Observatory; the Leibniz-Institut fuer Astrophysik Potsdam (AIP); the Australian National University; the Australian Research Council; the French National Research Agency; the German Research Foundation (SPP 1177 and SFB 881); the European Research Council (ERC-StG 240271 Galactica); the Istituto Nazionale di Astrofisica at Padova; The Johns Hopkins University; the National Science Foundation of the USA (AST-0908326); the W. M. Keck foundation; the Macquarie University; the Netherlands Research School for Astronomy; the Natural Sciences and Engineering Research Council of Canada; the Slovenian Research Agency (research core funding No. P1-0188); the Swiss National Science Foundation; the Science & Technology Facilities Council of the UK; Opticon; Strasbourg Observatory; and the Universities of Groningen, Heidelberg and Sydney. The RAVE web site is https://www.rave-survey.org. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC; https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement

    CHROMOSPHERICALLY ACTIVE STARS in the RAVE SURVEY. II. YOUNG DWARFS in the SOLAR NEIGHBORHOOD

    Get PDF
    © 2017. The American Astronomical Society. All rights reserved. A large sample of over 38,000 chromospherically active candidate solar-like stars and cooler dwarfs from the RAVE survey is addressed in this paper. An improved activity identification with respect to the previous study was introduced to build a catalog of field stars in the solar neighborhood with an excess emission flux in the calcium infrared triplet wavelength region. The central result of this work is the calibration of the age-activity relation for main-sequence dwarfs in a range from a few 10 Myr up to a few Gyr. It enabled an order of magnitude age estimation of the entire active sample. Almost 15,000 stars are shown to be younger than 1 Gyr and ∌2000 younger than 100 Myr. The young age of the most active stars is confirmed by their position off the main sequence in the J - K versus N UV - V diagram showing strong ultraviolet excess, mid-infrared excess in the J - K versus W 1 - W 2 diagram, and very cool temperatures (J - K < 0.7). They overlap with the reference pre-main-sequence RAVE stars often displaying X-ray emission. The activity level increasing with the color reveals their different nature from the solar-like stars and probably represents an underlying dynamo-generating magnetic fields in cool stars. Of the RAVE objects from DR5, 50% are found in the TGAS catalog and supplemented with accurate parallaxes and proper motions by Gaia. This makes the database of a large number of young stars in a combination with RAVE's radial velocities directly useful as a tracer of the very recent large-scale star formation history in the solar neighborhood. The data are available online in the Vizier database

    Chemical gradients in the Milky Way from the RAVE data II. Giant stars

    Get PDF
    Aims: We provide new constraints on the chemo-dynamical models of the Milky Way by measuring the radial and vertical chemical gradients for the elements Mg, Al, Si, Ti, and Fe in the Galactic disc and the gradient variations as a function of the distance from the Galactic plane (Z). Methods: We selected a sample of giant stars from the RAVE database using the gravity criterium 1.7 < log g < 2.8. We created a RAVE mock sample with the Galaxia code based on the Besançon model and selected a corresponding mock sample to compare the model with the observed data. We measured the radial gradients and the vertical gradients as a function of the distance from the Galactic plane Z to study their variation across the Galactic disc. Results: The RAVE sample exhibits a negative radial gradient of d[Fe/H]/dR = −0.054 dex kpc−1 close to the Galactic plane (|Z| < 0.4 kpc) that becomes flatter for larger |Z|. Other elements follow the same trend although with some variations from element to element. The mock sample has radial gradients in fair agreement with the observed data. The variation of the gradients with Z shows that the Fe radial gradient of the RAVE sample has little change in the range |Z| 0.6 kpc and then flattens. The iron vertical gradient of the RAVE sample is slightly negative close to the Galactic plane and steepens with |Z|. The mock sample exhibits an iron vertical gradient that is always steeper than the RAVE sample. The mock sample also shows an excess of metal-poor stars in the [Fe/H] distributions with respect to the observed data. These discrepancies can be reduced by decreasing the number of thick disc stars and increasing their average metallicity in the Besançon model

    Galactic kinematics from RAVE to Gaia-RVS Data

    Get PDF
    RAVE data has provided new results on Galactic kinematics like the kinematical decomposition of the Galactic disk. This decomposition permits to identify the different components of the disk and to characterize them in terms of scale height and scale length. With the data provided by Gaia and in particular the RVS, we will have a completly renewed view of the Galaxy. The precision of the RVS will permit to undertake a precise analysis of the kinematics of the Galactic disks. This knowledge will provide significant clues to constrain the scenarios of the Galactic disk formation

    Identification of the initial molecular changes in response to circulating angiogenic cells-mediated therapy in critical limb ischemia

    Get PDF
    BackgroundCritical limb ischemia (CLI) constitutes the most aggressive form of peripheral arterial occlusive disease, characterized by the blockade of arteries supplying blood to the lower extremities, significantly diminishing oxygen and nutrient supply. CLI patients usually undergo amputation of fingers, feet, or extremities, with a high risk of mortality due to associated comorbidities.Circulating angiogenic cells (CACs), also known as early endothelial progenitor cells, constitute promising candidates for cell therapy in CLI due to their assigned vascular regenerative properties. Preclinical and clinical assays with CACs have shown promising results. A better understanding of how these cells participate in vascular regeneration would significantly help to potentiate their role in revascularization.Herein, we analyzed the initial molecular mechanisms triggered by human CACs after being administered to a murine model of CLI, in order to understand how these cells promote angiogenesis within the ischemic tissues.MethodsBalb-c nude mice (n:24) were distributed in four different groups: healthy controls (C, n:4), shams (SH, n:4), and ischemic mice (after femoral ligation) that received either 50 mu l physiological serum (SC, n:8) or 5x10(5) human CACs (SE, n:8). Ischemic mice were sacrificed on days 2 and 4 (n:4/group/day), and immunohistochemistry assays and qPCR amplification of Alu-human-specific sequences were carried out for cell detection and vascular density measurements. Additionally, a label-free MS-based quantitative approach was performed to identify protein changes related.ResultsAdministration of CACs induced in the ischemic tissues an increase in the number of blood vessels as well as the diameter size compared to ischemic, non-treated mice, although the number of CACs decreased within time. The initial protein changes taking place in response to ischemia and more importantly, right after administration of CACs to CLI mice, are shown.ConclusionsOur results indicate that CACs migrate to the injured area; moreover, they trigger protein changes correlated with cell migration, cell death, angiogenesis, and arteriogenesis in the host. These changes indicate that CACs promote from the beginning an increase in the number of vessels as well as the development of an appropriate vascular network.Institute of Health Carlos III, ISCIII; Junta de Andaluci

    Chromospherically Active Stars in the RAVE Survey. II. Young dwarfs in the Solar neighborhood

    Get PDF
    A large sample of over 38,000 chromospherically active candidate solar-like stars and cooler dwarfs from the RAVE survey is addressed in this paper. An improved activity identification with respect to the previous study was introduced to build a catalog of field stars in the Solar neighborhood with an excess emission flux in the calcium infrared triplet wavelength region. The central result of this work is the calibration of the age--activity relation for the main sequence dwarfs in a range from a few 10  Myr10 \; \mathrm{Myr} up to a few Gyr. It enabled an order of magnitude age estimation of the entire active sample. Almost 15,000 stars are shown to be younger than 1  Gyr1\;\mathrm{Gyr} and ∌\sim2000 younger than 100  Myr100\;\mathrm{Myr}. The young age of the most active stars is confirmed by their position off the main sequence in the J−KJ-K versus NUV−VN_{UV}-V diagram showing strong ultraviolet excess, mid-infrared excess in the J−KJ-K versus W1−W2W_1-W_2 diagram and very cool temperatures (J−K>0.7J-K>0.7). They overlap with the reference pre-main sequence RAVE stars often displaying X-ray emission. The activity level increasing with the color reveals their different nature from the solar-like stars and probably represents an underlying dynamo generating magnetic fields in cool stars. 50\% of the RAVE objects from DR5 are found in the TGAS catalog and supplemented with accurate parallaxes and proper motions by Gaia. This makes the database of a large number of young stars in a combination with RAVE's radial velocities directly useful as a tracer of the very recent large-scale star formation history in the Solar neighborhood. The data are available online in the Vizier database

    The R-Process Alliance: Fourth Data Release from the Search for R-process-enhanced Stars in the Galactic Halo

    Get PDF
    This compilation is the fourth data release from the R-Process Alliance (RPA) search for r-process-enhanced stars and the second release based on "snapshot" high-resolution (R ~ 30,000) spectra collected with the du Pont 2.5 m Telescope. In this data release, we propose a new delineation between the r-I and r-II stellar classes at [Eu/Fe]=+0.7[\mathrm{Eu}/\mathrm{Fe}]=+0.7, instead of the empirically chosen [Eu/Fe]=+1.0[\mathrm{Eu}/\mathrm{Fe}]=+1.0 level previously in use, based on statistical tests of the complete set of RPA data released to date. We also statistically justify the minimum level of [Eu/Fe] for definition of the r-I stars, [Eu/Fe] > +0.3. Redefining the separation between r-I and r-II stars will aid in the analysis of the possible progenitors of these two classes of stars and determine whether these signatures arise from separate astrophysical sources at all. Applying this redefinition to previous RPA data, the number of identified r-II and r-I stars changes to 51 and 121, respectively, from the initial set of data releases published thus far. In this data release, we identify 21 new r-II, 111 new r-I (plus 3 re-identified), and 7 new (plus 1 re-identified) limited-r stars out of a total of 232 target stars, resulting in a total sample of 72 new r-II stars, 232 new r-I stars, and 42 new limited-r stars identified by the RPA to date
    • 

    corecore