3,964 research outputs found

    How to Measure Group Selection in Real-world Populations

    No full text
    Multilevel selection and the evolution of cooperation are fundamental to the formation of higher-level organisation and the evolution of biocomplexity, but such notions are controversial and poorly understood in natural populations. The theoretic principles of group selection are well developed in idealised models where a population is neatly divided into multiple semi-isolated sub-populations. But since such models can be explained by individual selection given the localised frequency-dependent effects involved, some argue that the group selection concepts offered are, even in the idealised case, redundant and that in natural conditions where groups are not well-defined that a group selection framework is entirely inapplicable. This does not necessarily mean, however, that a natural population is not subject to some interesting localised frequency-dependent effects – but how could we formally quantify this under realistic conditions? Here we focus on the presence of a Simpson’s Paradox where, although the local proportion of cooperators decreases at all locations, the global proportion of cooperators increases. We illustrate this principle in a simple individual-based model of bacterial biofilm growth and discuss various complicating factors in moving from theory to practice of measuring group selection

    Roche tomography of cataclysmic variables - V. A high-latitude star-spot on RU Pegasi

    Get PDF
    We present Roche tomograms of the secondary star in the dwarf nova system RU Pegasi derived from blue and red arm ISIS data taken on the 4.2-m William Herschel Telescope. We have applied the entropy landscape technique to determine the system parameters and obtained component masses of M1 = 1.06 Msun, M2 = 0.96 Msun, an orbital inclination angle of i = 43 degrees, and an optimal systemic velocity of gamma = 7 km/s. These are in good agreement with previously published values. Our Roche tomograms of the secondary star show prominent irradiation of the inner Lagrangian point due to illumination by the disc and/or bright spot, which may have been enhanced as RU Peg was in outburst at the time of our observations.We find that this irradiation pattern is axi-symmetric and confined to regions of the star which have a direct view of the accretion regions. This is in contrast to previous attempts to map RU Peg which suggested that the irradiation pattern was non-symmetric and extended beyond the terminator. We also detect additional inhomogeneities in the surface distribution of stellar atomic absorption that we ascribe to the presence of a large star-spot. This spot is centred at a latitude of about 82 degrees and covers approximately 4 per cent of the total surface area of the secondary. In keeping with the high latitude spots mapped on the cataclysmic variables AE Aqr and BV Cen, the spot on RU Peg also appears slightly shifted towards the trailing hemisphere of the star. Finally, we speculate that early mapping attempts which indicated non-symmetric irradiation patterns which extended beyond the terminator of CV donors could possibly be explained by a superposition of symmetric heating and a large spot.Comment: 14 pages, 10 figures, 3 tables Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Patterns of Activity Expressed by Juvenile Horseshoe Crabs

    Get PDF
    Adult American horseshoe crabs, Limulus polyphemus, possess endogenous circadian and circatidal clocks controlling visual sensitivity and locomotion, respectively. The goal of this study was to determine the types of activity rhythms expressed by juvenile horseshoe crabs (n = 24) when exposed to a 14:10 light/dark cycle (LD) for 10 days, followed by 10 days of constant darkness (DD). Horseshoe crab activity was recorded with a digital time-lapse video system that used an infrared-sensitive camera so animals could be monitored at night. In LD, 15 animals expressed daily patterns of activity, 6 displayed a circatidal pattern, and the remaining 3 were arrhythmic. Of the 15 animals with daily patterns of locomotion, 7 had a significant preference (P \u3c 0.05) for diurnal activity and 3 for nocturnal activity; the remainder did not express a significant preference for day or night activity. In DD, 13 horseshoe crabs expressed circatidal rhythms and 8 maintained a pattern of about 24 h. Although these results suggest the presence of a circadian clock influencing circatidal patterns of locomotion, these apparent circadian rhythms may actually represent the expression of just one of the two bouts of activity driven by the putative circalunidian clocks that control their tidal rhythms. Overall, these results indicate that, like adults, juvenile horseshoe crabs express both daily and tidal patterns of activity and that at least one, and maybe both, of these patterns is driven by endogenous clocks

    A ground-based NUV secondary eclipse observation of KELT-9b

    Get PDF
    KELT-9b is a recently discovered exoplanet with a 1.49 d orbit around a B9.5/A0-type star. The unparalleled levels of UV irradiation it receives from its host star put KELT-9b in its own unique class of ultra-hot Jupiters, with an equilibrium temperature > 4000 K. The high quantities of dissociated hydrogen and atomic metals present in the dayside atmosphere of KELT-9b bear more resemblance to a K-type star than a gas giant. We present a single observation of KELT-9b during its secondary eclipse, taken with the Wide Field Camera on the Isaac Newton Telescope (INT). This observation was taken in the U-band, a window particularly sensitive to Rayleigh scattering. We do not detect a secondary eclipse signal, but our 3σ\sigma upper limit of 181 ppm on the depth allows us to constrain the dayside temperature of KELT-9b at pressures of ~30 mbar to 4995 K (3σ\sigma). Although we can place an observational constraint of Ag<A_g< 0.14, our models suggest that the actual value is considerably lower than this due to H^- opacity. This places KELT-9b squarely in the albedo regime populated by its cooler cousins, almost all of which reflect very small components of the light incident on their daysides. This work demonstrates the ability of ground-based 2m-class telescopes like the INT to perform secondary eclipse studies in the NUV, which have previously only been conducted from space-based facilities.Comment: Accepted in ApJL. 7 pages, 3 figure

    Contragredient Transformations Applied to the Optimal Projection Equations

    Get PDF
    The optimal projection approach to solving the H2 reduced order model problem produces two coupled, highly nonlinear matrix equations with rank conditions as constraints. It is not obvious from their original form how they can be differentiated and how some algorithm for solving nonlinear equations can be applied to them. A contragredient transformation, a transformation which simultaneously diagonalizes two symmetric positive semi-definite matrices, is used to transform the equations into forms suitable for algorithms for solving nonlinear problems. Three different forms of the equations obtained using contragredient transformations are given. An SVD-based algorithm for the contragredient transformation and a homotopy algorithm for the transformed equations are given, together with a numerical example

    GPS Rates of Vertical Bedrock Motion Suggest Late Holocene Ice-Sheet Readvance in a Critical Sector of East Antarctica

    Get PDF
    We investigate present-day bedrock vertical motion using new GPS timeseries from the Totten-Denman glacier region of East Antarctica (∼77-120°E) where models of glacial isostatic adjustment (GIA) disagree, glaciers are likely losing mass, and few data constraints on GIA exist. We show that varying surface mass balance loading (SMBL) is a dominant signal, contributing random-walk-like noise to GPS timeseries across Antarctica. In the study region, it induces site velocity biases of up to ∼+1 mm/yr over 2010-2020. After correcting for SMBL displacement and GPS common mode error, subsidence is evident at all sites aside from the Totten Glacier region where uplift is ∼1.5 mm/yr. Uplift near the Totten Glacier is consistent with late Holocene ice retreat while the widespread subsidence further west suggests possible late Holocene readvance of the region’s ice sheet, in broad agreement with limited glacial geological data and highlighting the need for sampling beneath the current ice sheet

    How to measure group selection in real-world populations

    Full text link
    Multilevel selection and the evolution of cooperation are fundamental to the formation of higher-level organisation and the evolution of biocomplexity, but such notions are controversial and poorly understood in natural populations. The theoretic principles of group selection are well developed in idealised models where a population is neatly divided into multiple semi-isolated sub-populations. But since such models can be explained by individual selection given the localised frequency-dependent effects involved, some argue that the group selection concepts offered are, even in the idealised case, redundant and that in natural conditions where groups are not well-defined that a group selection framework is entirely inapplicable. This does not necessarily mean, however, that a natural population is not subject to some interesting localised frequency-dependent effects -- but how could we formally quantify this under realistic conditions? Here we focus on the presence of a Simpson's Paradox where, although the local proportion of cooperators decreases at all locations, the global proportion of cooperators increases. We illustrate this principle in a simple individual-based model of bacterial biofilm growth and discuss various complicating factors in moving from theory to practice of measuring group selection.Comment: pp. 672-679 in Proceedings of the Eleventh European Conference on the Synthesis and Simulation of Living Systems (Advances in Artificial Life, ECAL 2011). Edited by Tom Lenaerts, Mario Giacobini, Hugues Bersini, Paul Bourgine, Marco Dorigo and Ren\'e Doursat. MIT Press (2011). http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=12760. 8 pages, 5 figure

    Sensitivity Comparison of Ladar Receivers Designed to Detect Glint Targets

    Get PDF
    We present four receiver designs for a ladar system, based on an optical parametric amplifier, that is designed to collect returns from glint targets. After coupling the return energy into periodically poled lithium niobate, the target backscatter is detected with either an infrared camera or a CCD array. Assuming reasonable detector and system characteristics, the sensitivity of each design is then evaluated by setting the receiver SNR detection threshold equal to one and using the minimum transmitted energy as the figure of merit. Through numerical analysis, we show that an upconversion receiver followed by a visible CCD array offers the best trade-off between sensitivity and practical design for airborne ladar applications

    Extreme asteroids in the Pan-STARRS 1 Survey

    Get PDF
    Using the first 18 months of the Pan-STARRS 1 survey we have identified 33 candidate high-amplitude objects for follow-up observations and carried out observations of 22 asteroids. 4 of the observed objects were found to have observed amplitude Aobs1.0A_{obs}\geq 1.0 mag. We find that these high amplitude objects are most simply explained by single rubble pile objects with some density-dependent internal strength, allowing them to resist mass shedding even at their highly elongated shapes. 3 further objects although below the cut-off for 'high-amplitude' had a combination of elongation and rotation period which also may require internal cohesive strength, depending on the density of the body. We find that none of the 'high-amplitude asteroids' identified here require any unusual cohesive strengths to resist rotational fission. 3 asteroids were sufficiently observed to allow for shape and spin pole models to be determined through light curve inversion. 45864 was determined to have retrograde rotation with spin pole axes λ=218±10,β=82±5\lambda=218\pm 10^{\circ}, \beta=-82\pm 5^{\circ} and asteroid 206167 was found to have best fit spin pole axes λ=57±5\lambda= 57 \pm 5^{\circ}, β=67±5\beta=-67 \pm 5^{\circ}. An additional object not initially measured with Aobs>1.0A_{obs}>1.0 mag, 49257, was determined to have a shape model which does suggest a high-amplitude object. Its spin pole axes were best fit for values λ=112±6,β=6±5\lambda=112\pm 6^{\circ}, \beta=6\pm 5^{\circ}. In the course of this project to date no large super-fast rotators (Prot<2.2P_{rot} < 2.2 h) have been identified.Comment: 31 pages; accepted by A
    corecore