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Sensitivity comparison of ladar receivers
designed to detect glint targets
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Abstract. We present four receiver designs for a ladar system, based
on an optical parametric amplifier, that is designed to collect returns from
glint targets. After coupling the return energy into periodically poled
lithium niobate, the target backscatter is detected with either an infrared
camera or a CCD array. Assuming reasonable detector and system char-
acteristics, the sensitivity of each design is then evaluated by setting the
receiver SNR detection threshold equal to one and using the minimum
transmitted energy as the figure of merit. Through numerical analysis, we
show that an upconversion receiver followed by a visible CCD array
offers the best trade-off between sensitivity and practical design for air-
borne ladar applications. © 2002 Society of Photo-Optical Instrumentation Engi-
neers. [DOI: 10.1117/1.1479709]

Subject terms: glint targets; ladar; image upconversion.
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accepted for publication Jan. 11, 2002.

1 Introduction

Over the past several years, a great deal of work has been
sponsored by the United States Air Force to develop vari-
ous types of ladar~laser detection and ranging! systems.
Similar to conventional radar systems, the most basic pur-
pose of a pulsed ladar system is to illuminate a target with
a laser beam and then collect and focus as much return
energy as possible onto a detector. By measuring the time
difference between the transmitted and received pulses, the
range to the object or a specific point on the object can be
determined. By then scanning the beam across a target and
measuring the time differential at each point, a ladar system
can build up a one-, two-, or three-dimensional image with
a modest amount of postdetection processing.

Besides the ability to detect and range targets, most
state-of-the-art ladar systems are also designed to operate at
a wavelength that is eyesafe. For a system to be deemed
eyesafe under normal operating conditions, the lens, aque-
ous humor, and cornea of the eye must absorb the laser
radiation before the retina is damaged. This requirement
limits the source wavelength to the infrared region~1.4 to
1000 mm! of the spectrum.1 As a result, several studies
using infrared ~IR! source wavelengths are currently
underway.2

One such IR source under investigation is the optical
parametric oscillator~OPO!. By pumping a nonlinear crys-
tal such as lithium niobate (LiNbO3) with an infrared
source of wavelengthlp , two separate eye-safe beams can
be generated through difference-frequency generation
~DFG!.3 If the pump wavelength, the temperature, or the
orientation of the OPO crystal inside the transmitter cavity
is then varied, the output signal (ls) and idler (l i) wave-
lengths can be tuned to a spectral region where the target is
highly reflective. However, constantly changing the pump
or the crystal alignment is impractical, and the temperature
tuning range is limited to a few microns.3

To overcome these difficulties, another OPO tuning
technology, known as quasi-phase-matching~QPM!, has
been investigated.4 Through QPM, a periodic grating struc-
ture is poled into a LiNbO3 crystal and the output wave-
lengths tuned by varying the crystal temperature. The major
advantage of QPM is that it is possible to pole a single
crystal with several different grating structures, thereby ex-
panding the tuning range to several microns of the IR
spectrum.5 This makes the OPO ladar system very attrac-
tive for multispectral target interrogation.

Aside from the increased operational wavelength range,
periodically poled lithium niobate~PPLN! also permits the
operator to enhance the cavity gain of the transmitter by
accessing the largest element in the second-order nonlinear
susceptibility tensor.6 Even with this improvement, though,
OPO-based ladar systems are inherently limited in the
amount of energy available to illuminate a target. Typically
PPLN transmitters can emit'1.0 mJ of signal energy per
pulse before the damage threshold of the material is
reached.4 Depending on the atmospheric transmittance, the
target reflectivity, and the range, by the time the return is
focused onto a detector, the resulting power level may be
well below the threshold necessary for reliable detection.7

Since damage threshold imposes an upper limit on the
transmitted power, the ladar designer is forced to modify
the receiver to boost the magnitude of the target return.

It is with these issues in mind that we now investigate
several different ladar system designs. Section 2 briefly out-
lines the properties of diffuse and glint targets and dis-
cusses how the return power from a glint target is deter-
mined. Once this is established, Sec. 3 examines the signal-
to-noise ratios and minimum energy requirements of four
different ladar receivers designed to detect glint targets.
The four designs considered are a simple IR camera, an
optical parametric amplifier~OPA! receiver, an upconver-
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sion receiver, and a receiver equipped with an image inten-
sifier. We then present our conclusions in Sec. 4.

2 Power Received from a Glint Target

In general, ladar applications range from the remote sens-
ing of hazardous gas clouds to detecting hard targets on a
battlefield. For the purposes of this paper, our interest will
focus solely on detecting hard objects. Whether the opera-
tor is interested in airborne or ground-based targets, all hard
objects can be classified into two basic reflectivity catego-
ries: diffuse and glint.8

Diffuse targets ordinarily have very low reflectance. In
addition, when illuminated, each subsurface across a dif-
fuse target randomly scatters energy in a hemispherical re-
gion of space, with only a small fraction being directed
back towards the receiver. The power received from various
diffuse targets has recently been modeled by Steinvall.9

In contrast, a glint target is an object that scatters the
return energy into a much narrower region of space. For
example, on most man-made objects there are areas such as
windows or bumpers that act like glint retroreflectors. Typi-
cally, power ratios from these types of targets are well over
100 : 1 with respect to a diffuse background.10 Thus even
though an OPO-based ladar system may be limited to low
energies, it can still be used, for example, to search through
dense ground cover for downed aircraft or other hidden
targets. Once a glint object is found, the region can then be
interrogated further to determine the true nature of the tar-
get. It is with this application in mind that we focus the
remainder of this paper on evaluating several techniques for
identifying glint targets against diffuse backgrounds.

To accomplish this task, a radiometric model describing
the received powerPR from a flood-illuminated glint target
is first developed. Since most glints are highly reflective in
the retro direction, we will assume that the glint component
from any surface can be adequately modeled as a corner-
cube reflector with a circular cross section. Modeling the
ladar system geometry as shown in Fig. 1,PR is found by
applying radiometric theory. Integrating the angularly de-
pendent target radianceL t(u) over both the illuminated tar-
get areaAt and the solid angleVR subtended by the re-
ceiver at the target, we find11

PR5E E L t~u! dAt dVR. ~1!

Note that in formulating Eq.~1! the transmitter, target, and
receiver planes are assumed to be parallel and centered
with respect to one another, as shown in Fig. 1.

Equation~1! can now be simplified using basic radio-
metric definitions.11 Relating the target-plane radiance
L t(u) to the radiant exitanceM, the total power per unit
area reflected by the target can be written as

M5
PTxhatm

2 r

ATx
5E L t~u! dV t , ~2!

wherePTx is the transmitted power,r is the angular reflec-
tivity of the target,ATx is the area of the illumination beam
in the target plane, andV t is thetotal solid angle into which
the light from the target radiates. Furthermore,hatm is the
wavelength-dependent atmospheric transmittance given by
Beer’s law,12

hatm~l,L !5exp@2g~l!L#, ~3!

whereg~l! is the spectral extinction coefficient andL is the
target range. Note that this quantity is then squared in Eq.
~2! to allow for the round-trip flight of the transmitted
pulse. BecauseV t is small for most glint targets,L t(u) is
approximately constant and the integral in Eq.~2! reduces
to

PTxhatm
2 r

ATx
'L t~u!V t . ~4!

If the target and receiver areas are both small with respect
to the distancez by which they are separated, then solving
Eq. ~4! for L t(u) and substituting the result into Eq.~1!
yields the following general expression for the received
power:

PR5PTxrhatm
2 S At

ATx
3

VR

V t
D5PTxrhatm

2 S At

ATx
3

AR

At8
D . ~5!

In this equation,VR'AR/z2, V t'At8/z
2, AR is the receiver

area, andAt8 is the area of the target’s diffraction pattern in
the receiver plane. From Eq.~5!, we see that the received
power is inversely proportional to the area of the target’s
diffraction pattern in the receiver plane. Unfortunately,
once the geometry of the problem is established, unlike all
the other variables in the expression, this one is not con-
stant. Basic diffraction theory states that as the physical
size of an object is decreased, diffraction becomes more
pronounced, causingAt8 and the solid angle into which the
target radiates to increase.13

To illustrate the implications of Eq.~5!, consider the two
limiting cases, which we refer to as the near-field and far-
field regimes. As is typically the case, in both instances we
assume that the target is in the far field with respect to the
receiver ~i.e., z.2DR

2/ls, where DR is the receiver
diameter!.13 In the near-field regime, then, the target area is
assumed to be large enough that the receiver is in the tar-
get’s near field~i.e., z!2D t

2/ls, where D t is the target
diameter!. In this regime, diffraction effects in the receiver

Fig. 1 Ladar geometry used to calculate the radiometric expres-
sions for the received power.
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plane are minimal, makingAt'At8 . From Eq. ~5!, this
causesPR to remain constant with increasing target size. In
contrast, in the far-field regime the target is small enough
that the receiver is in the far field with respect to the target
~i.e., z>2D t

2/ls!, causingAt8 to expand due to diffraction.
With the glint object assumed to be circular, the target’s

far-field diffraction pattern in the receiver plane is readily
found by applying Fraunhofer diffraction theory. Using the
location of the first zeros in the Airy pattern to define the
areaAt,ff8 of target’s far field diffraction pattern, we find13

At,ff8 5pS 1.22ls z

D t
D 2

5
~0.61pls z!2

At
. ~6!

The total received power in each regime from a glint can
then be summarized as follows:

PR5PTxrhatm
2 AR

ATx H 1, @D t@DR#,

At /At8 @general case#,

At
2/~0.61pls z!2 @D t<~ls z/2!1/2#.

~7!

The trends in Eq.~7! are understood more fully by plot-
ting the normalized received powerPR/PTx versus target
diameter as shown in Fig. 2. This figure was generated for
a target range of 20 km using the reasonable ladar system
parameters found in Table 1. In addition, we have assumed
an eyesafe signal wavelength ofls52.1mm. At this wave-
length, for a typical earth atmospheric, the transmittance is
hatm'0.97 at 1 km and the value of the extinction coeffi-
cient in Eq. ~3! is readily found to beg(l)50.03/km.12

Given this reference point,hatm
2 for a round trip of 20 km is

approximately 29%. A Gaussian beam diameter of 2v0

55.34 mm was assumed at the exit aperture of the OPO
transmitter. Once propagated to the target plane, this par-
ticular beam size produces a 1/e2 spot diameter of 10 m
and flood-illuminates the object.

Upon inspection of Fig. 2, a few observations can be
made. Recall that the near-field region nominally begins

when the target diameter increases to the point whereD t

@DR. For the system parameters under consideration,
then, we observe that the ratio of received to transmitted
power becomes constant whenD t>1 m. In addition, due to
the At

2 in the far-field component of Eq.~7!, the curve in
Fig. 2 is quadratic below the far-field boundary. Given the
system parameters in Table 1, this boundary occurs where
the target diameter is equal toD t514.5 cm. Furthermore,
due to the division byz2 in the far-field expression of Eq.
~7!, the received power is very small. This fact will present
a challenge later: in keeping with the size of glint returns
commonly observed in practice, beginning in Sec. 3 only
glint target diameters less than 1 cm will be considered. For
the ladar systems to be analyzed, however, this will make it
possible to use exclusively the far-field diffraction model to
determine the received power. Finally, in the dashed region
between the two limiting cases, the glint diffraction pattern
in the receiver plane transitions from an Airy pattern in the
far field to roughly a mirror image of the target in the near
field. Such a transformation is readily accounted for by
numerically solving the Fresnel diffraction integral for a
circular aperture,13 but is beyond the scope of this paper.

3 Receiver Designs

Having developed a model for the total power received
from a glint target, we now examine how this information
can be used to determine the minimum transmitted power
needed to overcome detector noise. As stated earlier, typi-
cal ladar systems use standard optics to expand the trans-
mitted beam and illuminate an object a distancez away.
The light is then reflected off the target, collected by the
receiver, and focused onto a detector. For a small glint tar-
get located in the far field with respect to the receiver,PR
from Eq. ~7! can be written in terms of the transmitted
signal energyETx and the pulse durationDt as follows:

PR5
At

2ARrhatm
2

ATx~0.61pls z!2 •PTx5CS ETx

Dt D , ~8!

where

C5
At

2ARrhatm
2

ATx~0.61pls z!2 . ~9!

Fig. 2 Normalized received power versus target diameter. Here the
target range is assumed to be 20 km, and Fresnel integrals have
been used to approximate the region between the near-field and
far-field boundaries.

Table 1 Parameters used to evaluate the effectiveness of the OPO-
based ladar system and the various receiver designs.

Parameter Symbol Value

Transmitted pulse duration Dt 1 ns

Transmitted beam diameter 2v0 5.34 mm

OPO and SFG pump wavelength lp 1.064 mm

Signal wavelength ls 2.1 mm

Atmospheric extinction coefficient g(l) 0.03/km

Target diameter Dt 5 mm

Target reflectivity r 0.8

Receiver diameter DR 10 cm

Brewer, Duncan, and Watson: Sensitivity comparison . . .
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Depending on the transmitted energy, the illumination area,
the type of target, the range, and the diameter of the re-
ceiver, the return power may be well below the system
noise and never detected.

Choosing some reasonable values for the receiver char-
acteristics, the effectiveness of the ladar receiver system
can be evaluated. If these values are then held constant in
each design, the various receiver configurations can be
compared by analyzing the single-pixel signal-to-noise ra-
tio at the detector (SNRD). For this calculation, we have
chosen as the figure of merit the minimum transmitter en-
ergy ETx needed to meet a detection threshold of SNRD

51. This threshold, however, is arbitrary and can be ad-
justed to meet the requirements of any given system.

As a baseline, consider a direct-detection ladar receiver
with only an IR camera in the detector plane. Taking ac-
count of shot, dark current, and thermal noise, and assum-
ing that the detector response time is much less than the
transmitted pulse duration, the postdetection electrical
signal-to-noise ratio for a single-pixel at the detector can be
written as14

SNRD5
Psig

Pshot1Pthermal1Pdark

SNRD5
~RPR!2

2qRPR

Dt
1

2kbTD

Dt RL
1

2qID

Dt

, ~10!

SNRD5
~RCETx!

2

2qRCETx12kb Dt TD /RL12q Dt I D

whereR is the detector responsivity,q is the charge of the
electron, andkb is Boltzmann’s constant. LikewiseTD is
the temperature of the detector in kelvins,RL is the equiva-
lent load resistance, andI D is the dark current. This expres-
sion assumes that all of the received power is focused onto
the detector.

Employing the ladar system parameters in Table 1 and
the example detector parameters from a Sensors Unlimited
SU128-1.7 RT infrared camera~Table 2!, we can calculate
the minimum transmitted pulse energy for SNRD51 at
various target ranges. This trend is displayed in Fig. 3 for
the simple IR camera receiver, as well as the other receiver
designs to be examined shortly. As expected, to ensure the
same level of detection, we see thatETx must increase as
the target range increases. In addition, to examine how the
glint target reflectivity affects the receiver sensitivity, we
once again set the SNRD51 in Eq. ~10! and solve for the

minimum transmitted energy at a fixed target rangeL
520 km. These results are given in Fig. 4 as a function of
target reflectivity. From Figs. 3 and 4, we find that for a
system equipped with just an IR camera to achieve an op-
erational range of 20 km and detect a target whose reflec-
tivity is 80%,ETx must be>0.31 mJ. For some OPO trans-
mitter systems, this energy requirement is difficult to meet
without damaging the crystal and limits the types of glints
that can be detected.4 As a result, in the remainder of this
section, three alternative receiver schemes are examined
and the minimum energy required for SNRD51 deter-
mined.

3.1 OPA Receiver

One solution for detecting weak returns is to enhance the
received signal through a process known as optical para-
metric amplification~OPA!.15 By placing a separate PPLN
crystal, identical to the OPO transmitter, after the receiver
aperture and then pumping it with the same wavelengthlp
used in the OPO transmitter, another signal and idler beam
will be generated, as before, through DFG. When the in-
coming light is focused into the crystal, the received signal

Table 2 Infrared and CCD camera parameters used to evaluate the
receiver signal-to-noise ratios.

Parameter Symbol Infrared camera Visible CCD array

Responsivity R 0.89 A/W 0.48 A/W

Load resistance RL 50 q 5.1 kq

Dark current ID 100 nA 2 nA

Temperature TD 273 K 300 K

Fig. 3 Minimum transmitted energy required to detect a glint object,
with a reflectivity of r50.8, at various target ranges for the IR cam-
era, the OPA, the upconversion, and the image intensifier receivers.
Here SNRA51 for the OPA receiver and SNRD51 for the other
receiver designs.

Fig. 4 Minimum transmitted energy versus target reflectivity for the
IR camera, the OPA, the upconversion, and the image intensifier
receivers at a range of 20 km. Again SNRA51 for the OPA receiver
and SNRD51 for the other receiver designs.
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coherently stimulates the production of additional signal
photons within the OPA, thereby amplifying the glint re-
turn. This type of receiver system is depicted in Fig. 5,
where each lens L2 is a coupling optic after the main re-
ceiver optic LR, f 2 is the focal length of the coupling lens,
and the distance to the intermediate image plane of the
receiver is approximatelyf R.

Unfortunately, parametric amplification is not the only
process that takes place inside the nonlinear crystal. When
the pump beam is incident on the LiNbO3 crystal, sponta-
neous emission causes a noise term, analogous to that
found in electronic amplifiers, to arise within the OPA. The
signal and the noise then experience the same gainG across
the length of the OPA. If the received power is too weak,
the signal-to-noise ratio of the amplifier (SNRA) will al-
ways be less than one, regardless of the pump power. As a
result, the parametric noise imposes a lower limit on the
amount of energy needed to initially illuminate the glint
target.

Since the only requirement for parametric amplification
to occur is that SNRA>1, the minimum transmitted energy
ETx can be determined from the noise equivalent power
~NEP! associated with the DFG interaction between Gauss-
ian beams. Multiplying the photon energy of the signal by
the number of thermal photons per mode in a blackbody
enclosure, the NEP at the entrance face to the OPA crystal
can be written as follows15:

NEP5S hc

ls
D S c

ls
2DDl, ~11!

whereh is Planck’s constant andc is the speed of light. The
spectral acceptanceDl, centered at the signal wavelength
ls, may then be determined from the nonlinear efficiency
hNL of the DFG process within the PPLN crystal.3 Assum-
ing that the pump is constant over the entire length of the
crystal~i.e., undepleted! and that every incoming photon is
amplified, the variation inhNL can be written as7

hNL5S 11
Dk2

4g2 D sinh2~gLc!, ~12!

whereg is the following collection of constants:

g5F 2p2uxeff
~2!u2I p

lsl ine~ls,Tc!ne~l i ,Tc!c«0
2

Dk2

4 G1/2

, ~13!

andI p is the intensity of the optimally focused pump beam,
given by

I p5
2Pp

pvp
2 5

2.8434Ppne~lp ,Tc!

Lclp
. ~14!

Here Pp is the peak pump power,Lc is the crystal length,
«0 is the permittivity of free space, andne(lx ,Tc) is found
from the temperature-dependent Sellimer equations de-
scribing the extraordinary index of refraction in PPLN.16

Furthermore,xeff
(2) is the effective second-order nonlinear

susceptibility tensor element in PPLN, given by4

xeff
~2!5

2

p
xzzz

~2!5
2

p
~25 pm/V!. ~15!

In addition, Dk represents the phase-matching condition
between the pump (vp), signal (vs), and idler (v i) fre-
quencies and the crystal grating vector. In PPLN, this inter-
action can be described, using the conservation of energy
as3

\vs5\vp2\v i , ~16!

or in terms of the conservation of momentum as

Dk5kp2ks2k i2kG, ~17!

where\5h/2p, andk j is the wave vector associated with
each field or the crystal grating.

Upon close examination of Eq.~12!, we notice that the
nonlinear efficiency is essentially dependent on the phase
matchingDk buried inside of theg term. For perfect col-
linear phase matchingDk50. However, as the signal wave-
length moves off resonance, the idler wavelength changes
to compensate for the variation in photon momentum. This
change inDk can be put in terms of the spectral bandwidth
by modifying the conservation of energy and momentum
expressions, respectively, as follows:

ne~l i ,Tc!

l i
5

ne~lp ,Tc!

lp
2

ne~ls,Tc!

ls
~18!

and

Dk52pFne~lp ,Tc!

lp
2

ne~l i ,Tc!

l i
2

ne~ls,Tc!

ls
2

1

LG
G , ~19!

where LG is the PPLN grating periodicity. Substituting
Eqs.~18! and~19! into Eq.~12!, the DFG bandwidth can be
determined numerically by varyingls about its nominal
value and definingDl to be the FWHM of the efficiency
curve. Using the valuesLG531.8mm, Tc5150°C, Pp

520 W, Lc525 mm,lp51.064mm, andls52.1mm, the
spectral bandwidth is found to beDl50.144mm. Given
this spectral bandwidth, the minimum transmitted energy

Fig. 5 Modified receiver with an OPA crystal to amplify the glint
target return.
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needed to successfully amplify the glint return is found by
setting Eq.~8! equal to the NEP~i.e., SNRA51! to yield

ETx5
hc2 Dl Dt

Cls
3 , D t<DDLS , ~20!

where the collectionC of constants is again given by Eq.
~9!. For a ladar system with the design parameters given in
Table 1, the minimum transmitter energy needed to over-
come the amplifier noise in the OPA receiver is plotted in
Fig. 3 for various target ranges and in Fig. 4 for varying
target reflectivity at 20 km. From the two figures, we find
that the minimum transmitted energy for the OPA receiver
is higher than for the IR camera alone. This trend is directly
attributed to the large spectral bandwidth associated with
the NEP of the nonlinear amplifier. Transmitting a shorter
signal wavelength, though, may allow the ladar designer to
narrow the spectral acceptance of the OPA crystal. How-
ever, due to the eyesafety requirements and the well-
defined atmospheric transmission windows,12 this may
prove difficult.

With the minimum signal energy needed to overcome
the amplifier noise found, the postdetection signal-to-noise
ratio SNRD can be evaluated and the minimum OPA gain
required for successful glint detection can be determined.
Multiplying the NEP of the amplifier by the detector re-
sponsivity, the signal-to-noise ratio at the detector in terms
of the amplifier noisePamp can be written as follows14:

SNRD5
Psig

Pshot1Pthermal1Pdark1Pamp

5
~GRCETx!

2

2qG2RCETx1
2kb Dt TD

RL
12q Dt I D1S G Dt R hc2

ls
3 Dl D 2 .

~21!

This expression is very similar to Eq.~9!, with the excep-
tion of the signal gainG in the numerator and the gain-
dependent OPA and shot-noise terms in the denominator.
Substituting the system parameters from Table 1 and the IR
camera values from Table 2 into Eq.~21!, the signal-to-
noise ratio can be plotted as in Fig. 6 for a fixed target

range of 20 km. Here three different transmitted energies
were chosen such that the received energy in Eq.~20! is
less than, equal to, and greater than the OPA threshold of
ETx50.64 mJ. When the transmitted energy is just enough
to offset the OPA noise, SNRD approaches one as the am-
plifier gain increases. Eventually, when the detector gain
reaches saturation, the amplifier noise term dominates, and
any further gain from the OPA fails to improve the chances
of glint detection. From the plot, this minimum OPA gainG
for the SNRD to equal one is only aboutG55. Moreover,
increasingETx above the minimum needed to offset the
NEP of the amplifier also results in a reduction of the OPA
gain threshold. Regardless, both gain values are easily
achievable with current OPA technology.17

3.2 Upconversion Receivers

While the OPA receiver is quite capable of amplifying
weak glint signals, it has the major disadvantage that it
requires an expensive infrared camera to extract the incom-
ing signal from the target. Furthermore, these cameras often
have limited detection bandwidths or numbers of pixels. As
a result, they may not be suitable for all airborne ladar
systems. One possible solution to these problems is to re-
place the OPA crystal in Fig. 5 with a new PPLN crystal
whose grating periodicity is much smaller. This new crystal
is then capable of upconverting the frequency of the incom-
ing signal through sum-frequency generation~SFG!.18 If
the upconverted wavelengthlsum then falls within the vis-
ible or near IR region of the spectrum, this field can be
detected with a silicon CCD array. Not only are CCD cam-
eras much cheaper than IR cameras, they can operate at
room temperature as well.

To begin our analysis of such receivers, let us first look
at the upconversion process itself. Again using the conser-
vation of energy and momentum, for two collinear fields
the SFG interaction can be described by the following two
relationships18:

\vsum5\vp1\vs, ~22!

and

Dk52pFne~lp ,Tc!

lp
1

ne~ls,Tc!

ls
1

1

LG
2

ne~lsum,Tc!

lsum
G .
~23!

From the conservation-of-energy law in Eq.~22!, it is clear
that without the presence of a signal photon, the pump pho-
tons do not spontaneously upconvert into SFG photons.
Ideally then, the upconversion process does not contribute
any extra noise to the system. However, in practice this is
not the case. Spontaneous noisehasbeen observed by Mid-
winter and Warner in their early experiments with birefrin-
gent phase-matched materials.19 Assuming the angular field
of view of the camera is 2p steradians, this upconversion
noise Pupcon is found by integrating the total spontaneous
flux over the detector area, and is expressed as follows20:

Pupcon5
hvsum

4 v ivR
2PpLcuxeff

~2!u4

64pc8«0
2 Dt np

2nR
2nsumniAc~Dk2!2 , ~24!

Fig. 6 SNRD versus the OPA gain at a target range of 20 km. Here
ETx50.50, 0.64, and 0.75 mJ correspond to transmitted powers be-
low, equal to, and above the OPA noise threshold for amplification,
respectively.
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where Ac is the area of the crystal end face,vR
25(vsum

2v i)
2, and the phase matching of the collinear downcon-

version process is given byDk252kp1kG2ki2ksum. All
other variables denote the same physical parameters as in
Eqs.~13!–~15!. Additionally, the wavelength and tempera-
ture dependence of the index of refraction have been
dropped for simplicity, andvx denotes the angular frequen-
cies of the various pump, signal, SFG, and DFG idler fields.

Using the above expression for the upconversion noise,
the SNRD of the upconversion receiver can be written as

SNRD

5
Psig

Pshot1Pthermal1Pdark1Pupcon

5
~RhupCETx!

2

2qRhupCETx1
2kb Dt TD

RL
12q Dt I D1PupconDt2

,

~25!

wherehup is the efficiency of the upconversion process. As
one can see, this expression is very similar to Eq.~21! with
the exception of the efficiency term associated with the shot
noise and the received signal. Additionally, with the re-
placement of the OPA by the SFG crystal, there no longer is
any system gain. Using Eq.~25! along with l i52.15mm
and lsum5706 nm, the minimum transmitted energy
needed to overcome the detector noise can be determined
using the system values in Table 1 and the example CCD
camera values in Table 2. Setting SNRD51, the minimum
ETx once again is examined as a function of target range
and reflectivity as shown in Figs. 3 and 4, respectively.
Note that the idler and SFG wavelengths were obtained by
solving the conservation-of-energy relationships for the
DFG and SFG interactions given in Eqs.~11! and ~22!,
respectively, for an ideal upconversion efficiency ofhup

5100% ~i.e., every signal photon produces a SFG photon!.
We also assume a 2531531-mm PPLN crystal poled at
15.9mm, pumped with 20 W, and operated at a temperature
Tc5100°C. From Figs. 3 and 4, we see that in the absence
of the amplifier noise, at all ranges and reflectivities, the
minimum energy requirement is nearly an order of magni-
tude less than that needed for the OPA system or IR camera
discussed earlier. Thus, replacing the IR detector with a
visible CCD camera does lower the minimum energy and
allows the operator to use a technology that is generally
more stable, more compact, and much cheaper than most
IR cameras.

3.3 Image Intensifier Receiver

In an additional effort to incorporate the CCD camera into
the receiver system, the last ladar system investigated is an
upconversion receiver incorporating an image intensifier.
Under low light conditions, a small amount of radiation
from the target, incident on the front surface of the device,
is amplified by a series of photocathodes.21 The primary
advantage of the image intensifier is that it can easily have
an optical gain on the order of 100,000.22 With such a dra-
matic increase in signal power, the image intensifier is ide-
ally suited for enhancing the glint return. Until recently

though, most photocathodes have been restricted to submi-
cron wavelengths.23 Therefore, upconversion to visible
wavelengths is needed to detect the IR signal over a wide
band.24 Except for a slight modification, the image intensi-
fier system shown in Fig. 7 is very similar to the upconver-
sion receiver in Sec. 3.2. As before, the glint signal is col-
lected and Fourier transformed into the upconversion
crystal where it is upconverted. The resulting signal is then
imaged onto an image intensifier before being detected by
the CCD array.

Given the image intensifier receiver, the SNRD for the
system can now be calculated. Since the photocathode gain
across the device is not uniform, the output current and thus
the noise of the system are also no longer constants. This
deviation in photocurrent can be accounted for by finding
the mean̂ i& and the variances i

2 of the output current as a

function of the mean random gainḠ. By averaging over all
the random eventsand random gains associated with the
image intensifier, it can be shown that the mean output
currentand the variance are given by25

^ i &5 ī 5
qḠPRhQE

hn
5ḠPRR ~26!

and

s i
25

2q2Ḡ2hQEBwFPR

hn
5

2qḠ2FPRR
Dt

, ~27!

whereq is the charge of the electron,hQE is the quantum
efficiency, Bw is the bandwidth, andF is the noise figure
associated with the image intensifier.

Using Eqs.~25! and~26!, the signal-to-noise ratio at the
detector for the image intensifier receiver is given by

SNRD5
Psig

Pshot1Pthermal1Pdark1Pupcon

5
~ḠRhCETx!

2

2qRhFḠ2CETx1
2kb Dt TD

RL

12q Dt I D1Dt2 Pupcon

,

~28!

Fig. 7 Diagram of the image intensifier receiver system. The incom-
ing signal is upconverted to a visible wavelength and then amplified
by an image intensifier before being detected.
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wherePupcon is given by Eq.~24!. Note that the quantum
efficiencyh associated with the received power is the prod-
uct of the upconversion efficiency and the quantum effi-
ciency of the photocathodes inside the image intensifier.
While this expression is in many respects similar to Eq.
~25!, several differences need to be highlighted. Unlike the
OPA receiver, the mean gain for the image intensifier is not
a function of the pump power or crystal properties. Once a
specific device is chosen, the mean gain across the device is
fixed and measurable. As mentioned earlier, this gain can
be as high as 100,000. The noise power factorF is also
quantifiable, by measuring the SNR before and after the
device: the ratio of the input SNR to the output SNR isF.25

For most second- and third-generation devices, the value of
F ranges from 3 to 5.

With the mean gain now constant, the minimum trans-
mitted power from the OPO can readily be determined.
Assuming a conservative gain of 20,000 andF54, the
signal-to-noise ratio can be evaluated in conjunction with
the values in Tables 1 and 2. Substituting these values into
Eq. ~27!, the minimumETx is calculated as a function of
target range and reflectivity as before, and is illustrated in
Figs. 3 and 4. In comparison with the other systems in Fig.
3, the minimum energy requirement for the image intensi-
fier system is two orders of magnitude lower. Thus this
system allows one to take advantage of the wide tunability
of the OPO transmitter while providing the best chance of
detecting single glint targets in an ideal environment.

4 Conclusions

Ladar systems currently under investigation incorporating
periodically poled lithium niobate in the transmitter can
have an operating range anywhere from 1.1 to 5.5mm if
several grating structures are poled onto a single piece of
PPLN. This wide tunability makes the OPO-based system
very attractive for multispectral target interrogation. Unfor-
tunately, detecting such a wide range of IR signals often
requires a significant amount of transmitted energy. OPO
transmitters, though, are inherently limited in the amount of
power available for target illumination and thus have a re-
stricted range of operation. However, the contrast offered
by glint returns over diffuse returns can be used with the
appropriate system parameters to allow for selective detec-
tion of glint and not the background. Assuming a typical
system geometry and some reasonable detector characteris-
tics, this paper has presented four receiver designs for de-
tecting glint returns. Each design was then evaluated by
setting the receiver SNR detection threshold equal to one
and using the minimum transmitted energy as the figure of
merit.

Through numerical analysis, we have shown that para-
metric amplification of glint returns before detection has
roughly the same energy requirements as the IR camera
alone. These two receiver schemes both incorporate an ex-
pensive IR camera and are difficult to operate on airborne
platforms. To overcome such limitations, a similar receiver
design involving image upconversion was also investi-
gated. By upconverting the frequency of the incoming light
to the near IR region of the spectrum, not only is it possible
to use a cheaper and more reliable CCD camera, but the
minimum transmitted energy may be decreased by nearly
an order of magnitude.

The last design involved an image intensifier to enhance
the upconverted signal before detection with a CCD. As-
suming a trivial device gain of 20,000, the minimum en-
ergy needed for detection was lowered by an additional two
orders of magnitude from that of the OPA receiver. How-
ever, while the image-intensifier receiver has the lowest
energy requirements and provides the greatest chance of
detecting glint targets against a diffuse background, it may
often be too sensitive for most airborne systems. For ex-
ample, if a genuine glint target is located in a desert envi-
ronment, random glint returns from the sand may be
enough to trigger the detector, thereby causing the target to
be lost in background clutter. Therefore, while the image
intensifier receiver may have the lowest transmitted energy
requirements of the four receiver designs, the upconversion
receiver may provide the best possibility of detecting de-
sired glint targets without being subject to false alarms.
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