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ABSTRACT.

The optimal projection approach to solving the Hy reduced order model problem produces
two coupled, highly nonlinear matrix equations with rank conditions as constraints. It is not
obvious from their original form how they can be differentiated and how some algorithm for solving
nonlinear equations can be applied to them. A contragredient transformation, a transformation
which simultaneously diagonalizes two symmetric positive semidefinite matrices, is used to transform
the equations into forms suitable for algorithms for solving nonlinear problems. Three different
forms of the equations obtained using contragredient transformations are given, An SVD-based
algorithm for the contragredient transformation and a homotopy algorithm for the transformed
equations are given, together with a numerical example.

1. INTRODUCTION.

In [8] Hyland and Bernstein considered the quadratic (H») reduced order model problem, which
is to find a reduced order model for a given continuous time stationary linear system which minimizes
a quadratic model error criterion. The necessary conditions for the optimal reduced order model are
given in the form of two modified Lyapunov equations, matrix equations which resemble the (linear)
matrix Lyapunov equations, but are highly nonlinear and mutually coupled. It is shown here how
these equations (known as the optimal projection equations) can be transformed into forms suitable
for algorithms for solving nonlinear problems. The crucial step is a contragredient transformation,
a transformation which simultaneously diagonalizes two symmetric positive semidefinite matrices
Q, P satisfying rank (Q) = rank (P) = rank (@ P).

Some other applications of the optimal projection approach include the H | Hoo model reduction
problem [5], the fixed order dynamic compensation problem [7] and the reduced order state estimation
problem [1].

The complete statement of the reduced order model problem is given in Section 2. Section 3 gives
some theoretical background on contragredient transformations and their relationship to (G, M, T)-
factorizations. An SVD-based algorithm for the numerical computation of these decompositions
is also derived. Section 4 gives three possible ways to transform the optimal projection equations
using contragredient transformations into a computationally useful form. Section 5 describes a
numerical homotopy algorithm based on contragredient transformations, and Section 6 summarizes.
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2. STATEMENT OF THE PROBLEM.

Given the controllable and observable, time invariant, continuous time system

() = Az(t) + Bu(t),
y(t) = C (1),

where A € R**" B € R™*™, ' € R™", the goal is to find, for given n,, < m, a reduced order

maodel
Em(t) = Am Tm () + Bm u(t),

Y (t) = Cm m(2),

where 4,, € R*»Xmm B € R™X™_(, € R™*"n which minimizes the quadratic model-reduction

criterion

J(Am, By Cra) = lim E [(y — gm)* By = ym)],

where the input u(t) is white noise with positive definite intensity ¥ and R is a positive definite

weighting matrix.
It is assumed that A is asymptotically stable and diagonalizable, and a solution (Am, B, Cm)

is sought in the set

Ay = {(Amy Bm,Cn) : Am is stable, (Am, Bn) is controllable and (A, Cy,) is observable}.

DeriniTION 1. Given symmetnc positive semidefinite matrices 0O, P € R™™ such that
rank (§) = rank (P) = rank (QP) = ny, matrices G, T € R"»*" and positive semisimple M €
RnmXnm are called a (G, M, T)-factorization (projective factorization) of QP if

OP=G'MT,
¢t =1,,.

Positive semisimple means similar to a symmetric positive definite matrix.
The following theorem from [8] gives necessary conditions for the optimal solution to the

reduced order model problem.
THEOREM 2. Suppose (Am, Bm, Cm) € Ay solves the optimal model-reduction problem. Then

there exist symmetmc positive semidefinite matrices Q, P € R™" such that for some (G, M,T)-
factorization of QP, A, By and Cy, are given by

A, =TAG,
B, =TBH,
Cm = CGY,

and such that, with T = G'T the following conditions are satisfied:

0=r[AQ+Q A"+ BV B, (1)
0=[A'P+PA+C RC]T, (2)
rank (Q) = rank (P) = rank (@ P) = #m. (3)
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The matrices Q and P are called the controllability and observability pseudogramians, respec-
tively, since they are analogous to the Gramians G, and G, which satisfy the dual Lyapunov
equations

AG.+G.A*+ BV B =0,

A*Go+ G, A+C*RC = 0.

T is an oblique projection (idempotent) operator since 72 = 7. The projection matrix 7 can also
be expressed as
7= (QP)(QP),

where (@ P)! is the Drazin inverse [2]. Observe that this implies 7 is uniquely defined by  and P.

Note that + makes equations (1)-(2) highly nonlinear implicit functions of ¢ and P, and it is
not clear how to differentiate T (the factorizations defining it are not unique). Even supposing that
T could be differentiated and a Newton, quasi-Newton, or homotopy algorithm applied directly to
(1)~(2), it is unclear how to enforce (3). @ and P could be projected to achieve the correct rank,
but that won’t make ) P have the correct rank.

3. CONTRAGREDIENT TRANSFORMATION BACKGROUND.

The following theorem from [8], which is a special case of a result in [3], gives a sufficient
condition for simultaneous reduction of two symmetric positive semidefinite matrices to a diagonal
form using a contragredient transformation. The proof given here, which differs from that in
[8], is constructive and provides an outline for the numerical computation of the contragredient
transformation. The core of the construction is similar to ideas developed for the full rank case in

[91.

TrEOREM 3. [8, Proposition 2.3] Let symmetric positive semidefinite (), P € R**™ satisfy
rank (@) = rank (P) = rank (Q P) = nyy,, (4)

where ny, < n. Then, there exists a nonsingular W € R™*" (contragredient transformation) and
posilive definite diagonal X € R™™ X" guch that

Q::W(? g)wt, P:W‘*(§ 8)W‘1. (5)

Proof. Since ¢} and P are symmetric positive semidefinite and have rank n.,, there exist X,
Y € R™"= with full column rank such that Q = XX* and P = YY?. Let X, ¥ € Rrx{n—nm)
have columns that span ker (@) and ker (P), respectively. Since QP = X(X?Y)Y?, (4) implies
that X*Y is nonsingular. Likewise the matrices (X ¥) and (Y X) are nonsingular. To see this,

suppose that (¥ .X) ( L;) = 0. Thus Ya = —Xb and premultiplication by X? yields X*Ya = 0,
implying @ = 0 since X*Y is invertible. Then b = 0 also since X has full column rank. Thus (Y X )

is nonsingular and the nonsingularity of (X ¥) follows similarly. Since

(X ?)t(Y X)= (X;Y }_’?X’) ’
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clearly Y*X is nonsingular. Define the two singular value decompositions XY = UXV? and

XY = UTVY, and let
e (U 0\ /% o\~
W_(XY)(O ‘7)(0 S) :

Since W is the product of nonsingular matrices it must be nonsingular. Straightforward calculations

verify that
W—l _ b)) 9 =172 Vt _[_) Ift
“\0 I 0 Ut Xt)

and that W is a contragredient transformation simultaneously diagonalizing () and P. .
The following lemma defines the construction of the projective factorization used in the optimal
projection approach for solving the reduced order model problem and relates it to the contragredient
transformation of Theorem 3. o
LEMMA 4. [8, Lemma 2.1} Let symmetric positive semidefinite ¢}, P € R™ ™ satisfy the rank
conditions (4). Then there ezists ¢ (G, M,T)-factorization of Q P, i.e., there ezist G, T € RrmXn
and positive semisimple M € R X"m gych that
QP=6GtMT, (6)
¢t =1,,.. (7)

Proof. Due to Theorem 3 there exist nonsingular W € R™*™ and positive definite diagonal
3 € R"=X"m guch that

s _ (S Nyt 5 e (S 0\,
Q—W(O O)W, P=w (0 O)W . (8)
The equations (8) can be expressed in the equivalent form
Q=wWTWi, P=Uizm, (9)
where
Tl
——
W = (W1 Wz), W_le:nm{ (gl). (10)
2
From (9)-(10) with G = W, M = £? and I = U; follow (6) and (7). =

The algorithm for computing the (G, M, T')-factorization of § P becomes:
1) Form Cholesky-type factorizations of @ and P with symmetric pivoting:

Q =IgLoLLTl, = XX¢,
P=TpLplLllh = YY?,
where Lp, Lo € R™*™ and Ip, Il € R™ " are permutation matrices. (See [4] §4.2.9, for

example.)
2) Form the singular value decomposition of

XY = (lgLg)'(IpLp) = USV!,
(Consider avoiding the explicit formation of the product as in {6].)

3) Assign
Wi =TlgLoUs /2,

Uy =21yt
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4. EQUIVALENT FORMS OF THE OPTIMAL PROJECTION EQUATIONS.

Three different ways of applying the contragredient transformation to obtain simpler forms of
the optimal projection equations (1)~(3) will now be given. Homotopy methods based on these
forms are given in [10].

4.1. FIRST FORM OF THE EQUATIONS.

Homotopy algorithms for solving optimal projection equations can be designed using decom-
positions of the pseudogramians based on contragredient transformations.

The equations (1)~(2) can be considered in another, equivalent form. If (1) is multiplied by Uy
from the left, and (2) is multiplied by W, from the right, using the contragredient transformation

Q=W EW}, P=Ulzu,

the following two equations are obtained:

UZWAWIEW{ +Z W} A*+ U, BV Bt = ¢, (11)
AUIR+UIS U, AW, +CERC W, = 0. (12)

The third equation
UL0Whi-I=0 (13)

determines the relationship between W, and Uy.

The matrix equations (11)~(13) contain 2 n n,, -+ n2, scalar equations. On the other hand, the
only natural unknowns in ( 11)—(13), Wy, Uy and diagonal X, contain 27 N + Ny, variables. Hence,
something else is necessary to match the number of equations and the number of unknowns.

One approach is to consider ¥ to be symmetric and all elements of ¥ as unknowns. This
is appropriate, since the equations (11)}(13) with a full symmetric ¥ can be transformed into
equations of the same form with a diagonal & by computing

E=T3T Wi=W, T, U, =TT,
where 3 is diagonal and T is orthogonal.

4.2. SECOND FORM OF THE EQUATIONS.
Another approach in transforming (1)-(2) is to consider the decomposition

Q=wswi, P=ulau,

which leads to the equations

U AWIZ Wi+ SW{A* + U, BV Bt = ¢, (14)
AUIQ+ UL QUIAW, + CPRCW, =0, (15)
LW -1=0, (16)

which also have 27 n,, + n2, scalar equations. In this case the number of unknowns in Wi, Uy
and symmetric & and Q is 2nn,, -+ nk 4+ nn,. An additional nm equations can be obtained, for
example, by requiring

Oii —wiy =0 fori=1,...,n,.
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4.3. THIRD FORM OF THE EQUATIONS.

Another way to design a method using equations (14)~(16)is to reduce the number of unknowns.
The number of unknowns can be reduced to 27nn., + nﬁl if the diagonal elements of § are taken
to be the diagonal elements of Z.

5. CONTRAGREDIENT BASED HOMOTOPY ALGORITHM.

A homotopy algorithm for the nonlinear equations (11)~(13) can be developed as follows.
Replace A in (11) and (12) by A(A) = (1 — A)D + XA, where D is chosen so that the problem
(D, B,C) is easily solved, or at least a good approximation to a solution is easily obtained. The
choice of D is a story by itself that is not central to the development here. Suffice it to say that
good algorithms for choosing D exist [10]. One could also replace B and C by (1—-A)By+ AB and
(1 = A)Co + AC, but it turns out that is not really necessary. The homotopy map (initially) is

(Ul AMNWEWF+EW] AN+ UL BV Bt)
Pa(Az) = Fla,\z)= | AV UES+ U ST AW+ C*RCW; | =0, (17)
Uy -1

where & consists of the matrices Uy, Wi, and ¥ (assuming the first form of the equations), 0 < A < 1,
and a is a parameter vector involved in the definition of D. a is crucial for theoretical discussions
of the global convergence properties of homotopy methods, but can be viewed as a constant and
ignored for the linear algebra discussion here.

In general terms, the homotopy algorithm is to track the solutions of pa(X,z) = 0 as A varies
(not necessarily monotonically!) from 0 to 1, going from the known solution zy at A = 0 to a
solution of the original problem (11)-(13) at A = 1. Under reasonably general hypotheses on Pas
the solution set of p, = 0 contains a smooth 1-manifold ¥ emanating from (0, z;) and guaranteed
to reach a solution & at A = 1. 7 can be tracked by robust and sophisticated numerical algorithms
(see [10] and the references therein for more details).

Recall that ¢ and P are symmetric, and thus, mathematically from (9), ¥ is also sym-
metric. However, depending on the choice of D and the initial point zo = ((U1)o, (W1)o, Za),
and because of roundoff errors and mathematical approximations along 7y, the computed points
(A,z) = (A, Uy, W1, Z) along v will almost certainly not have 3 being symmetric., Technically,
this doesn’t matter because ¥ will become symmetric at A = 1 (and computational experience
verifies this). However, computational experience shows that it is desirable {but not theoretically
necessary) to enforce the symmetry of & along the homotopy path. This is done by observing that
a symmetrized ¥ corresponds to some homotopy map that could have been chosen initially. In
effect, zo is changed in the homotopy map at each step along the homotopy zero curve v. Precisely,
at each point along the solution locus the homotopy map has the form

pa(A, z) = F(a, A, z) - (1 - A\)F(a,0, o), (18)

but 29 keeps adapting to preserve the symmetry of X.
In summary, the whole algorithm is:
1) Define D as in [10].
2) Choose a starting point (Qo, Py) using one of the strategies explained in [10]. Compute {(W1)o,
(U1)o and Zp using the algorithm of Section 3.
3) Set A:=0, z := zg = (W), (U1 )o, Lo)-



Ficurg 1. Trace of Xy4.

4) Evaluate p,(A,z) given by (18).

5) Evaluate the Jacobian matrix Dp,{),z). B

6) Take a step along the curve and obtain 2y = (W3, Uy, £), A

7) Compute Z3 = (W1, 0h,X) = (W1, U, (T + £9)/2).

8) Change the homotopy ps(},z) to

Fla, Az}~ (1-Aw =0,
where v = F(a, A, 1)/(1-X). _

9) If A < 1, then set « := #y, A := ), and go to Step 4.
10) I A > 1, compute the solution Z; at A = 1. Compute the reduced order model by diagonalizing

T=TZT.
5.1. AN EXAMPLE.
Consider the system (System 5 in [10]) defined by

~10 1 0 0
A= -5 0 1], B={|1], C=(1 0 0).
-1 0 0 1

With V = R = I and the initial system D = —10I, 21 steps {Jacobian matrix evaluations) were
required to find the model of order n,, = 1:

Ay = (—0.157898), B, = (0.423088), Cn, = (0.423088).
This model yields the cost J = (.0107792. Figure 1 shows the trace of Xy, which is typical of
homotopy zero curves v (note the sharp turn where most of the curve tracking effort was spent).
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6. SUMMARY.

This note gives an application of contragredient transformations to the optimal projection
equations for solving the Hy model reduction problem. In their original form the equations are very
hard to deal with, since there is no clear way to differentiate them or enforce the rank conditions,
When transformed using contragredient transformations the equations become quadratic, and while
still very challenging nonlinear equations, at least amenable to quasi-Newton or homotopy algorithms
for nonlinear systems. Since the exact match between the number of equations and the number of
unknowns can be made in many different ways, the equations can be presented in different equivalent
forms, three of which were described here. Computational experience with homotopy algorithms
based on contragredient transformations reported in [10] suggests they are robust and practical
for small problems (2 nn,, + n2, < 1000). Finding practical algorithms for solving the H; reduced
order model problem for large n and n,, remains an open problem. Finally, it must be pointed
out that quasi-Newton or other locally convergent techniques are simply inadequate—homotopy
algorithms are the only known reliable way to solve these control problems.
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