10 research outputs found
Development and characterization of positively selected brain-adapted SIV
HIV is found in the brains of most infected individuals but only 30% develop neurological disease. Both viral and host factors are thought to contribute to the motor and cognitive disorders resulting from HIV infection. Here, using the SIV/rhesus monkey system, we characterize the salient characteristics of the virus from the brain of animals with neuropathological disorders. Nine unique molecular clones of SIV were derived from virus released by microglia cultured from the brains of two macaques with SIV encephalitis. Sequence analysis revealed a remarkably high level of similarity between their env and nef genes as well as their 3' LTR. As this genotype was found in the brains of two separate animals, and it encoded a set of distinct amino acid changes from the infecting virus, it demonstrates the convergent evolution of the virus to a unique brain-adapted genotype. This genotype was distinct from other macrophage-tropic and neurovirulent strains of SIV. Functional characterization of virus derived from representative clones showed a robust in vitro infection of 174xCEM cells, primary macrophages and primary microglia. The infectious phenotype of this virus is distinct from that shown by other strains of SIV, potentially reflecting the method by which the virus successfully infiltrates and infects the CNS. Positive in vivo selection of a brain-adapted strain of SIV resulted in a near-homogeneous strain of virus with distinct properties that may give clues to the viral basis of neuroAIDS
Regulation of Indoleamine 2,3-Dioxygenase Expression in Simian Immunodeficiency Virus-Infected Monkey Brains
The human immunodeficiency virus type 1-associated cognitive-motor disorder, including the AIDS dementia complex, is characterized by brain functional abnormalities that are associated with injury initiated by viral infection of the brain. Indoleamine 2,3-dioxygenase (IDO), the first and rate-limiting enzyme in tryptophan catabolism in extrahepatic tissues, can lead to neurotoxicity through the generation of quinolinic acid and immunosuppression and can alter brain chemistry via depletion of tryptophan. Using the simian immunodeficiency virus (SIV)-infected rhesus macaque model of AIDS, we demonstrate that cells of the macrophage lineage are the main source for expression of IDO in the SIV-infected monkey brain. Animals with SIV encephalitis have the highest levels of IDO mRNA, and the level of IDO correlates with gamma interferon (IFN-γ) and viral load levels. In vitro studies on mouse microglia reveal that IFN-γ is the primary inducer of IDO expression. These findings demonstrate the link between IDO expression, IFN-γ levels, and brain pathology signs observed in neuro-AIDS
CD4 Independence of Simian Immunodeficiency Virus Envs Is Associated with Macrophage Tropism, Neutralization Sensitivity, and Attenuated Pathogenicity
To investigate the basis for envelope (Env) determinants influencing simian immunodeficiency virus (SIV) tropism, we studied a number of Envs that are closely related to that of SIVmac239, a pathogenic, T-tropic virus that is neutralization resistant. The Envs from macrophage-tropic (M-tropic) virus strains SIVmac316, 1A11, 17E-Fr, and 1100 facilitated infection of CCR5-positive, CD4-negative cells. In contrast, the SIVmac239 Env was strictly dependent upon the presence of CD4 for membrane fusion. We also found that the Envs from M-tropic virus strains, which are less pathogenic in vivo, were very sensitive to antibody-mediated neutralization. Antibodies to the V3-loop, as well as antibodies that block SIV gp120 binding to CCR5, efficiently neutralized CD4-independent, M-tropic Envs but not the 239 Env. However, triggering the 239 Env with soluble CD4, presumably resulting in exposure of the CCR5 binding site, made it as neutralization sensitive as the M-tropic Envs. In addition, mutations of N-linked glycosylation sites in the V1/V2 region, previously shown to enhance antigenicity and immunogenicity, made the 239 Env partially CD4 independent. These findings indicate that Env-based determinants of M tropism of these strains are generally associated with decreased dependence on CD4 for entry into cells. Furthermore, CD4 independence and M tropism are also associated with neutralization sensitivity and reduced pathogenicity, suggesting that the humoral immune response may exert strong selective pressure against CD4-independent M-tropic SIVmac strains. Finally, genetic modification of viral Envs to enhance CD4 independence may also result in improved humoral immune responses
Methamphetamine Increases Brain Viral Load and Activates Natural Killer Cells in Simian Immunodeficiency Virus-Infected Monkeys
Methamphetamine (Meth) abuse increases risky behaviors that contribute to the spread of HIV infection. In addition, because HIV and Meth independently affect physiological systems including the central nervous system, HIV-induced disease may be more severe in drug users. We investigated changes in blood and brain viral load as well as differences in immune cells in chronically simian immunodeficiency virus-infected rhesus macaques that were either administered Meth or used as controls. Although Meth administration did not alter levels of virus in the plasma, viral load in the brain was significantly increased in Meth-treated animals compared with control animals. Meth treatment also resulted in an activation of natural killer cells. Given the prevalence of Meth use in HIV-infected and HIV at-risk populations, these findings reveal the likely untoward effects of Meth abuse in such individuals