1,312 research outputs found

    Differential association of air pollution exposure with neonatal and postneonatal mortality in England and Wales: A cohort study.

    Get PDF
    BACKGROUND: Many but not all studies suggest an association between air pollution exposure and infant mortality. We sought to investigate whether pollution exposure is differentially associated with all-cause neonatal or postneonatal mortality, or specific causes of infant mortality. METHODS AND FINDINGS: We separately investigated the associations of exposure to particulate matter with aerodynamic diameter ≤ 10 μm (PM10), nitrogen dioxide (NO2), and sulphur dioxide (SO2) with all-cause infant, neonatal, and postneonatal mortality, and with specific causes of infant deaths in 7,984,366 live births between 2001 and 2012 in England and Wales. Overall, 51.3% of the live births were male, and there were 36,485 infant deaths (25,110 neonatal deaths and 11,375 postneonatal deaths). We adjusted for the following major confounders: deprivation, birthweight, maternal age, sex, and multiple birth. Adjusted odds ratios (95% CI; p-value) for infant deaths were significantly increased for NO2, PM10, and SO2 (1.066 [1.027, 1.107; p = 0.001], 1.044 [1.007, 1.082; p = 0.017], and 1.190 [1.146, 1.235; p < 0.001], respectively) when highest and lowest pollutant quintiles were compared; however, neonatal mortality was significantly associated with SO2 (1.207 [1.154, 1.262; p < 0.001]) but not significantly associated with NO2 and PM10 (1.044 [0.998, 1.092; p = 0.059] and 1.008 [0.966, 1.052; p = 0.702], respectively). Postneonatal mortality was significantly associated with all pollutants: NO2, 1.108 (1.038, 1.182; p < 0.001); PM10, 1.117 (1.050, 1.188; p < 0.001); and SO2, 1.147 (1.076, 1.224; p < 0.001). Whilst all were similarly associated with endocrine causes of infant deaths (NO2, 2.167 [1.539, 3.052; p < 0.001]; PM10, 1.433 [1.066, 1.926; p = 0.017]; and SO2, 1.558 [1.147, 2.116; p = 0.005]), they were differentially associated with other specific causes: NO2 and PM10 were associated with an increase in infant deaths from congenital malformations of the nervous (NO2, 1.525 [1.179, 1.974; p = 0.001]; PM10, 1.457 [1.150, 1.846; p = 0.002]) and gastrointestinal systems (NO2, 1.214 [1.006, 1.466; p = 0.043]; PM10, 1.312 [1.096, 1.571; p = 0.003]), and NO2 was also associated with deaths from malformations of the respiratory system (1.306 [1.019, 1.675; p = 0.035]). In contrast, SO2 was associated with an increase in infant deaths from perinatal causes (1.214 [1.156, 1.275; p < 0.001]) and from malformations of the circulatory system (1.172 [1.011, 1.358; p = 0.035]). A limitation of this study was that we were not able to study associations of air pollution exposure and infant mortality during the different trimesters of pregnancy. In addition, we were not able to control for all confounding factors such as maternal smoking. CONCLUSIONS: In this study, we found that NO2, PM10, and SO2 were differentially associated with all-cause mortality and with specific causes of infant, neonatal, and postneonatal mortality

    Laser forming of fibre metal laminates

    Get PDF
    The laser forming process has been shown to be a viable method of shaping metallic components, as a means of rapid prototyping and of adjusting and aligning. Although the process does compete with conventional forming processes, applications are being discovered where laser forming alone can achieve the desired results. The application reported in this work demonstrates how the process can be used to form recently developed high strength fibre metal laminate materials. These materials due to their construction and high strength are difficult to form once constructed using conventional techniques. Fibre metal laminates are of particular interest to the aerospace industry, where the high strength yet lightweight construction of parts made with these materials offers significant weight reductions and hence a reduction in operational costs of new large commercial aircraft such as the Airbus A380. In addition a more recent application under investigation for these materials is in the construction of street furniture (e.g. litter bins) and airline cargo containers utilising their excellent blast resistance capabilities to save lives in the event of terrorism. © 2005 Old City Publishing, Inc

    Multiple parallel skin markers for minimal incision lumbar disc surgery; a technical note

    Get PDF
    BACKGROUND: Spinal surgery depends on accurate localization to prevent incorrect surgical approaches. The trend towards minimally invasive surgery that minimizes surgical exposure and reduces postoperative pain increasingly requires surgeons to accurately determine the operative level before an incision is made. Preoperative localization with a C-arm image intensifier is popular, but the exposure of both patients and theatre staff to radiation is a disadvantage, as well as being time-consuming. METHODS: We describe a simple surgical tool developed to help localize exact spinal levels in conjunction with a simple AP X-ray film immediately before surgery. Multiple parallel skin markers were made using a circular oven rack comprising multiple 1.5 cm spaced parallel wires attached to a circular outside rim. The longest line was placed on the line of the postero-superior iliac spine (PSIS) over the junction of the L5-S1 region. RESULTS AND CONCLUSIONS: Based on the film taken, the incision can be accurately made at the intended level. The incision wound can be minimized to 3.0 cm even when using conventional disc surgery instruments

    BRG1 interacts with SOX10 to establish the melanocyte lineage and to promote differentiation

    Get PDF
    Mutations in SOX10 cause neurocristopathies which display varying degrees of hypopigmentation. Using a sensitized mutagenesis screen, we identified Smarca4 as a modifier gene that exacerbates the phenotypic severity of Sox10 haplo-insufficient mice. Conditional deletion of Smarca4 in SOX10 expressing cells resulted in reduced numbers of cranial and ventral trunk melanoblasts. To define the requirement for the Smarca4 -encoded BRG1 subunit of the SWI/SNF chromatin remodeling complex, we employed in vitro models of melanocyte differentiation in which induction of melanocyte-specific gene expression is closely linked to chromatin alterations. We found that BRG1 was required for expression of Dct, Tyrp1 and Tyr, genes that are regulated by SOX10 and MITF and for chromatin remodeling at distal and proximal regulatory sites. SOX10 was found to physically interact with BRG1 in differentiating melanocytes and binding of SOX10 to the Tyrp1 distal enhancer temporally coincided with recruitment of BRG1. Our data show that SOX10 cooperates with MITF to facilitate BRG1 binding to distal enhancers of melanocyte-specific genes. Thus, BRG1 is a SOX10 co-activator, required to establish the melanocyte lineage and promote expression of genes important for melanocyte function

    The Non-Steroidal FXR Agonist Cilofexor Improves Portal Hypertension and Reduces Hepatic Fibrosis in a Rat NASH Model

    Get PDF
    Background: The farnesoid X receptor (FXR) influences hepatic metabolism, inflammation and liver fibrosis as key components of non-alcoholic steatohepatitis (NASH). We studied the effects of the non-steroidal FXR agonist cilofexor (formerly GS-9674) on portal pressure and fibrosis in experimental NASH. Methods: NASH was induced in Wistar rats using a choline-deficient high-fat diet plus intraperitoneal sodium nitrite injections. First, a dose-finding study was performed with 10 mg/kg and 30 mg/kg of cilofexor, focusing on histological readouts. Liver fibrosis was assessed by Picro-Sirius-Red, desmin staining and hepatic hydroxyproline content. Gene expression was determined by RT-PCR. In a subsequent hemodynamic study, rats received 30 mg/kg cilofexor with or without propranolol (25 mg/kg). Portal pressure, systemic hemodynamics and splanchnic blood flow were measured. Results: Cilofexor dose-dependently induced FXR target genes shp, cyp7a1 and fgf15 in hepatic and ileal tissues, paralleled by a dose-dependent reduction in liver fibrosis area (Picro-Sirius-Red) of −41% (10 mg/kg) and −69% (30 mg/kg), respectively. The 30 mg/kg cilofexor dose significantly reduced hepatic hydroxyproline content (−41%), expression of col1a1 (−37%) and pdgfr-β (−36%), as well as desmin area (−42%) in NASH rats. Importantly, cilofexor decreased portal pressure (11.9 ± 2.1 vs. 8.9 ± 2.2 mmHg; p = 0.020) without affecting splanchnic blood-flow or systemic hemodynamics. The addition of propranolol to cilofexor additionally reduced splanchnic inflow (−28%) but also mean arterial pressure (−25%) and heart rate (−37%). Conclusion: The non-steroidal FXR agonist cilofexor decreased portal hypertension and reduced liver fibrosis in NASH rats. While cilofexor seems to primarily decrease sinusoidal resistance in cirrhotic portal hypertension, the combination with propranolol additionally reduced mesenteric hyperperfusion

    Dynamic coupling of fast channel gating with slow ATP-turnover underpins protein transport through the Sec translocon.

    Get PDF
    The Sec translocon is a highly conserved membrane assembly for polypeptide transport across, or into, lipid bilayers. In bacteria, secretion through the core channel complex-SecYEG in the inner membrane-is powered by the cytosolic ATPase SecA. Here, we use single-molecule fluorescence to interrogate the conformational state of SecYEG throughout the ATP hydrolysis cycle of SecA. We show that the SecYEG channel fluctuations between open and closed states are much faster (~20-fold during translocation) than ATP turnover, and that the nucleotide status of SecA modulates the rates of opening and closure. The SecY variant PrlA4, which exhibits faster transport but unaffected ATPase rates, increases the dwell time in the open state, facilitating pre-protein diffusion through the pore and thereby enhancing translocation efficiency. Thus, rapid SecYEG channel dynamics are allosterically coupled to SecA via modulation of the energy landscape, and play an integral part in protein transport. Loose coupling of ATP-turnover by SecA to the dynamic properties of SecYEG is compatible with a Brownian-rachet mechanism of translocation, rather than strict nucleotide-dependent interconversion between different static states of a power stroke

    Lipidomics Reveals Early Metabolic Changes in Subjects with Schizophrenia: Effects of Atypical Antipsychotics

    Get PDF
    There is a critical need for mapping early metabolic changes in schizophrenia to capture failures in regulation of biochemical pathways and networks. This information could provide valuable insights about disease mechanisms, trajectory of disease progression, and diagnostic biomarkers. We used a lipidomics platform to measure individual lipid species in 20 drug-naïve patients with a first episode of schizophrenia (FE group), 20 patients with chronic schizophrenia that had not adhered to prescribed medications (RE group), and 29 race-matched control subjects without schizophrenia. Lipid metabolic profiles were evaluated and compared between study groups and within groups before and after treatment with atypical antipsychotics, risperidone and aripiprazole. Finally, we mapped lipid profiles to n3 and n6 fatty acid synthesis pathways to elucidate which enzymes might be affected by disease and treatment. Compared to controls, the FE group showed significant down-regulation of several n3 polyunsaturated fatty acids (PUFAs), including 20:5n3, 22:5n3, and 22:6n3 within the phosphatidylcholine and phosphatidylethanolamine lipid classes. Differences between FE and controls were only observed in the n3 class PUFAs; no differences where noted in n6 class PUFAs. The RE group was not significantly different from controls, although some compositional differences within PUFAs were noted. Drug treatment was able to correct the aberrant PUFA levels noted in FE patients, but changes in re patients were not corrective. Treatment caused increases in both n3 and n6 class lipids. These results supported the hypothesis that phospholipid n3 fatty acid deficits are present early in the course of schizophrenia and tend not to persist throughout its course. These changes in lipid metabolism could indicate a metabolic vulnerability in patients with schizophrenia that occurs early in development of the disease. © 2013 McEvoy et al

    Bacterial biofilm in salivary gland stones: Cause or consequence?

    Get PDF
    OBJECTIVE: The pathogenesis of salivary calculi is not yet clear; however, 2 theories have been formulated: (1) "the classic theory," based on calcium microdeposits in serous and ductal acinous cells, successively discharged into the ducts; (2) "the retrograde theory," based on a retrograde migration of food, bacteria, and so on from the oral cavity to the salivary duct. The aim of the present study is to highlight the role of bacteria and biofilm in stone formation. STUDY DESIGN: Case series without comparison. SETTING: Laboratory of the Department of Anatomical Pathology. SUBJECTS AND METHODS: Traditional optic microscopy and scanning electron microscopy were carried out on 15 salivary gland calculi that were collected from 12 patients. A qPCR (quantitative real-time polymerase chain reaction) assay was performed to highlight the presence of bacterial DNA on each stone. RESULTS: Optic microscopy showed formations that-due to their size, shape, and Gram and Giemsa staining-seemed to be Gram-positive bacterial cells. PAS- (periodic acid-Schiff) and alcian-PAS-positive staining matrix was present around them. The ultrastructural observation of the material processed for scanning electron microscopy showed the presence of structures resembling bacterial cells in the middle of the stones, surrounded by soft, amorphous material. Results of qPCR showed the presence of bacterial DNA in the internal part of the tissue sample. CONCLUSIONS: The presence of bacteria and/or bacterial products resembling biofilm in salivary gland stones supports the "retrograde theory." This evidence may support the hypothesis that biofilm could be the causative effect of lithiasic formations

    Mutation of the diamond-blackfan anemia gene Rps7 in mouse results in morphological and neuroanatomical phenotypes.

    Get PDF
    The ribosome is an evolutionarily conserved organelle essential for cellular function. Ribosome construction requires assembly of approximately 80 different ribosomal proteins (RPs) and four different species of rRNA. As RPs co-assemble into one multi-subunit complex, mutation of the genes that encode RPs might be expected to give rise to phenocopies, in which the same phenotype is associated with loss-of-function of each individual gene. However, a more complex picture is emerging in which, in addition to a group of shared phenotypes, diverse RP gene-specific phenotypes are observed. Here we report the first two mouse mutations (Rps7(Mtu) and Rps7(Zma)) of ribosomal protein S7 (Rps7), a gene that has been implicated in Diamond-Blackfan anemia. Rps7 disruption results in decreased body size, abnormal skeletal morphology, mid-ventral white spotting, and eye malformations. These phenotypes are reported in other murine RP mutants and, as demonstrated for some other RP mutations, are ameliorated by Trp53 deficiency. Interestingly, Rps7 mutants have additional overt malformations of the developing central nervous system and deficits in working memory, phenotypes that are not reported in murine or human RP gene mutants. Conversely, Rps7 mouse mutants show no anemia or hyperpigmentation, phenotypes associated with mutation of human RPS7 and other murine RPs, respectively. We provide two novel RP mouse models and expand the repertoire of potential phenotypes that should be examined in RP mutants to further explore the concept of RP gene-specific phenotypes

    Identification of a Cardiac Specific Protein Transduction Domain by In Vivo Biopanning Using a M13 Phage Peptide Display Library in Mice

    Get PDF
    Background: A peptide able to transduce cardiac tissue specifically, delivering cargoes to the heart, would be of significant therapeutic potential for delivery of small molecules, proteins and nucleic acids. In order to identify peptide(s) able to transduce heart tissue, biopanning was performed in cell culture and in vivo with a M13 phage peptide display library. Methods and Results: A cardiomyoblast cell line, H9C2, was incubated with a M13 phage 12 amino acid peptide display library. Internalized phage was recovered, amplified and then subjected to a total of three rounds of in vivo biopanning where infectious phage was isolated from cardiac tissue following intravenous injection. After the third round, 60% of sequenced plaques carried the peptide sequence APWHLSSQYSRT, termed cardiac targeting peptide (CTP). We demonstrate that CTP was able to transduce cardiomyocytes functionally in culture in a concentration and cell-type dependent manner. Mice injected with CTP showed significant transduction of heart tissue with minimal uptake by lung and kidney capillaries, and no uptake in liver, skeletal muscle, spleen or brain. The level of heart transduction by CTP also was greater than with a cationic transduction domain. Conclusions: Biopanning using a peptide phage display library identified a peptide able to transduce heart tissue in vivo efficiently and specifically. CTP could be used to deliver therapeutic peptides, proteins and nucleic acid specifically to the heart. © 2010 Zahid et al
    • …
    corecore