15,750 research outputs found
Extreme-value statistics from Lagrangian convex hull analysis for homogeneous turbulent Boussinesq convection and MHD convection
We investigate the utility of the convex hull of many Lagrangian tracers to
analyze transport properties of turbulent flows with different anisotropy. In
direct numerical simulations of statistically homogeneous and stationary
Navier-Stokes turbulence, neutral fluid Boussinesq convection, and MHD
Boussinesq convection a comparison with Lagrangian pair dispersion shows that
convex hull statistics capture the asymptotic dispersive behavior of a large
group of passive tracer particles. Moreover, convex hull analysis provides
additional information on the sub-ensemble of tracers that on average disperse
most efficiently in the form of extreme value statistics and flow anisotropy
via the geometric properties of the convex hulls. We use the convex hull
surface geometry to examine the anisotropy that occurs in turbulent convection.
Applying extreme value theory, we show that the maximal square extensions of
convex hull vertices are well described by a classic extreme value
distribution, the Gumbel distribution. During turbulent convection,
intermittent convective plumes grow and accelerate the dispersion of Lagrangian
tracers. Convex hull analysis yields information that supplements standard
Lagrangian analysis of coherent turbulent structures and their influence on the
global statistics of the flow.Comment: 18 pages, 10 figures, preprin
Dynamin- and Rab5-Dependent Endocytosis of a Ca<sup>2+</sup>-Activated K<sup>+</sup> Channel, KCa2.3
Regulation of the number of ion channels at the plasma membrane is a critical component of the physiological response. We recently demonstrated that the Ca2+-activated K+ channel, KCa2.3 is rapidly endocytosed and enters a Rab35- and EPI64C-dependent recycling compartment. Herein, we addressed the early endocytic steps of KCa2.3 using a combination of fluorescence and biotinylation techniques. We demonstrate that KCa2.3 is localized to caveolin-rich domains of the plasma membrane using fluorescence co-localization, transmission electron microscopy and co-immunoprecipitation (co-IP). Further, in cells lacking caveolin-1, we observed an accumulation of KCa2.3 at the plasma membrane as well as a decreased rate of endocytosis, as assessed by biotinylation. We also demonstrate that KCa2.3 and dynamin II are co-localized following endocytosis as well as demonstrating they are associated by co-IP. Further, expression of K44A dynamin II resulted in a 2-fold increase in plasma membrane KCa2.3 as well as a 3-fold inhibition of endocytosis. Finally, we evaluated the role of Rab5 in the endocytosis of KCa2.3. We demonstrate that expression of a dominant active Rab5 (Q79L) results in the accumulation of newly endocytosed KCa2.3 on to the membrane of the Rab5-induced vacuoles. We confirmed this co-localization by co-IP; demonstrating that KCa2.3 and Rab5 are associated. As expected, if Rab5 is required for the endocytosis of KCa2.3, expression of a dominant negative Rab5 (S34N) resulted in an approximate 2-fold accumulation of KCa2.3 at the plasma membrane. This was confirmed by siRNA-mediated knockdown of Rab5. Expression of the dominant negative Rab5 also resulted in a decreased rate of KCa2.3 endocytosis. These results demonstrate that KCa2.3 is localized to a caveolin-rich domain within the plasma membrane and is endocytosed in a dynamin- and Rab5-dependent manner prior to entering the Rab35/EPI64C recycling compartment and returning to the plasma membrane. © 2012 Gao et al
Enhancing space transportation: The NASA program to develop electric propulsion
The NASA Office of Aeronautics, Exploration, and Technology (OAET) supports a research and technology (R and T) program in electric propulsion to provide the basis for increased performance and life of electric thruster systems which can have a major impact on space system performance, including orbital transfer, stationkeeping, and planetary exploration. The program is oriented toward providing high-performance options that will be applicable to a broad range of near-term and far-term missions and vehicles. The program, which is being conducted through the Jet Propulsion Laboratory (JPL) and Lewis Research Center (LeRC) includes research on resistojet, arcjets, ion engines, magnetoplasmadynamic (MPD) thrusters, and electrodeless thrusters. Planning is also under way for nuclear electric propulsion (NEP) as part of the Space Exploration Initiative (SEI)
How realistic is the mixed-criticality real-time system model?
23rd International Conference on Real-Time Networks and Systems (RTNS 2015). 4 to 6, Nov, 2015, Main Track. Lille, France. Best Paper Award NomineeWith the rapid evolution of commercial hardware platforms, in most application domains, the industry has shown
a growing interest in integrating and running independently-developed applications of different “criticalities” in the
same multicore platform. Such integrated systems are commonly referred to as mixed-criticality systems (MCS).
Most of the MCS-related research published in the state-of-the-art cite the safety-related standards associated to
each application domain (e.g. aeronautics, space, railway, automotive) to justify their methods and results.
However, those standards are not, in most cases, freely available, and do not always clearly and explicitly specify
the requirements for mixed-criticality systems. This paper addresses the important challenge of unveiling the
relevant information available in some of the safety-related standards, such that the mixed-criticality concept is
understood from an industrialist’s perspective. Moreover, the paper evaluates the state-of-the-art mixed-criticality
real-time scheduling models and algorithms against the safety-related standards and clarifies some
misconceptions that are commonly encountered
Effect of forward motion on engine noise
Methods used to determine a procedure for correcting static engine data for the effects of forward motion are described. Data were analyzed from airplane flyover and static-engine tests with a JT8D-109 low-bypass-ratio turbofan engine installed on a DC-9-30, with a CF6-6D high-bypass-ratio turbofan engine installed on a DC-10-10, and with a JT9D-59A high-bypass-ratio turbofan engine installed on a DC-10-40. The observed differences between the static and the flyover data bases are discussed in terms of noise generation, convective amplification, atmospheric propagation, and engine installation. The results indicate that each noise source must be adjusted separately for forward-motion and installation effects and then projected to flight conditions as a function of source-path angle, directivity angle, and acoustic range relative to the microphones on the ground
Peptides as potent antimicrobials tethered to a solid surface: Implications for medical devices
Medical devices are an integral part of therapeutic management; despite their importance, they carry a significant risk of microbial infection. Bacterial attachment to a medical device is established by a single, multiplying organism, leading to subsequent biofilm formation. To date, no preventative measures have impacted the incidence of device-related infection. We report the bidirectional covalent coupling of an engineered cationic antimicrobial peptide (eCAP), WLBU2, to various biological surfaces is accomplished. These surfaces included (i) a carbohydrate-based gel matrix, (ii) a complex polymeric plastic bead, and (iii) a silica-calcium phosphate nanocomposite associated with bone reconstruction. WLBU2-conjugated surfaces are shown to retain potent antimicrobial activity related to bacterial surface adhesion. This study provides proof of principle that covalently coating laboratory and bone-regenerating materials with eCAPs has the potential for decreasing infection rates of implanted devices. These findings have important consequences to the patient management component of our current health care technology
Warming trends in summer heatwaves
The frequency and severity of heatwaves is expected to increase as the global climate warms. We apply crossing theory for the first time to determine heatwave properties solely from the distribution of daily observations without time‐correlation information. We use Central England Temperature timeseries to quantify how the simple increased occurrence of higher temperatures makes heatwaves (consecutive summer days with temperatures exceeding a threshold) more frequent and intense. We find an overall 2‐3‐fold increase in heatwave activity since the late 1800's. Week‐long heatwaves that on average return every 5 years were typically below ∼28°C and now typically exceed it. Our analysis takes as inputs average user‐specific heatwave properties. Its output pinpoints the range of temperatures for which changes in the distribution must be well‐resolved statistically in order to track how these heatwave properties are changing. This provides a quantitative benchmark for models used for the attribution of heatwaves
Generation of FGF reporter transgenic zebrafish and their utility in chemical screens
<p>Abstract</p> <p>Background</p> <p>Fibroblast Growth Factors (FGFs) represent a large family of secreted proteins that are required for proper development and physiological processes. Mutations in mouse and zebrafish FGFs result in abnormal embryogenesis and lethality. A key to understanding the precise role for these factors is to determine their spatial and temporal activity during embryogenesis.</p> <p>Results</p> <p>Expression of <it>Dual Specificity Phosphatase 6 </it>(<it>dusp6</it>, also known as <it>Mkp3</it>) is controlled by FGF signalling throughout development. The <it>Dusp6 </it>promoter was isolated from zebrafish and used to drive expression of destabilized green fluorescent protein (<it>d2EGFP</it>) in transgenic embryos (<it>Tg(Dusp6:d2EGFP)</it>). Expression of d2EGFP is initiated as early as 4 hours post-fertilization (hpf) within the future dorsal region of the embryo, where <it>fgf3 </it>and <it>fgf8 </it>are initially expressed. At later stages, d2EGFP is detected within structures that correlate with the expression of <it>Fgf </it>ligands and their receptors. This includes the mid-hindbrain boundary (MHB), pharyngeal endoderm, otic vesicle, hindbrain, and Kupffer's vesicle. The expression of d2EGFP is under the control of FGF signalling as treatment with FGF Receptor (FGFR) inhibitors results in the suppression of d2EGFP expression. In a pilot screen of commercially available small molecules we have evaluated the effectiveness of the transgenic lines to identify specific FGF inhibitors within the class of indolinones. These compounds were counter screened with the transgenic line <it>Tg(Fli1:EGFP)</it><sup><it>y</it>1</sup>, that serves as an indirect read-out for Vascular Endothelial Growth Factor (VEGF) signalling in order to determine the specificity between related receptor tyrosine kinases (RTKs). From these assays it is possible to determine the specificity of these indolinones towards specific RTK signalling pathways. This has enabled the identification of compounds that can block specifically the VEGFR or the FGFR signalling pathway.</p> <p>Conclusion</p> <p>The generation of transgenic reporter zebrafish lines has allowed direct visualization of FGF signalling within the developing embryo. These FGF reporter transgenic lines provide a tool to screen for specific compounds that can distinguish between two conserved members of the RTK family.</p
- …