27 research outputs found

    Effect of pre-analytical treatments on bovine milk acute phase proteins

    Get PDF
    Background Samples for diagnostic procedures often require some form of pre-analytical preparation for preservation or safe handling during transportation prior to analysis in the laboratory. This is particularly important for milk samples which frequently need preservatives to retain milk composition as close to that found in freshly collected samples as possible. Methods Milk samples were treated by heating at 56 °C for 30 min or preserved by addition of either potassium dichromate or bronopol respectively. Haptoglobin (Hp), mammary associated serum amyloid A3 (M-SAA3) and C-reactive protein (CRP) were measured in the various treatment groups and in control samples which were not treated, using enzyme linked immunoassays. The concentrations of each APP were compared between treated and non-treated groups using the Wilcoxon signed ranks tests. Results Heat treatment of samples was found to have a significant lowering effect on milk M-SAA3 and CRP but not Hp. The use of potassium dichromate and bronopol as preservatives in milk had no significant effects on milk Hp and M-SAA3 concentration but lowered milk CRP values compared to controls. Conclusions The observed effects of heating and preservative use on milk APP should be taken into consideration when assaying samples which have undergone heat treatment as a result of international transfer regulations involving biological samples or samples needing chemical preservation prior to transport to laboratory

    Maternal undernutrition and the ovine acute phase response to vaccination

    Get PDF
    Background: The acute phase response is the immediate host response to infection, inflammation and trauma and can be monitored by measuring the acute phase proteins (APP) such as haptoglobin ( Hp) or serum amyloid A (SAA). The plane of nutrition during pregnancy is known to affect many mechanisms including the neuroendocrine and neuroimmune systems in neonatal animals but effects on the APP are unknown. To investigate this phenomenon the serum concentration of Hp and SAA was initially determined in non-stimulated lambs from 3 groups (n = 10/group). The dams of the lambs of the respective groups were fed 100% of requirements throughout gestation (High/High; HH); 100% of requirements for the first 65 d of gestation followed by 70% of requirements until 125 d from when they were fed 100% of requirements (High/Low; HL); 65% of liveweight maintenance requirements for the first 65 d gestation followed by 100% of requirements for the remainder of pregnancy ( Low/High; LH). The dynamic APP response in the lambs was estimated by measuring the concentration of Hp and SAA following routine vaccination with a multivalent clostridial vaccine with a Pasteurella component, Heptavac P (TM) following primary and secondary vaccination. Results: The Hp and SAA concentrations were significantly lower at the time of vaccination ( day 8-14) than on the day of birth. Vaccination stimulated the acute phase response in lambs with increases found in both Hp and SAA. Maternal undernutrition led to the SAA response to vaccination being significantly lower in the HL group than in the HH group. The LH group did not differ significantly from either the HH or HL groups. No significant effects of maternal undernutrition were found on the Hp concentrations. A significant reduction was found in all groups in the response of SAA following the second vaccination compared to the response after the primary vaccination but no change occurred in the Hp response. Conclusion: Decreased SAA concentrations, post-vaccination, in lambs born to ewes on the HL diet shows that maternal undernutrition prior to parturition affects the innate immune system of the offspring. The differences in response of Hp and SAA to primary and secondary vaccinations indicate that the cytokine driven APP response mechanisms vary with individual AP

    Acute phase protein response in an experimental model of ovine caseous lymphadenitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Caseous lymphadenitis (CLA) is a disease of small ruminants caused by <it>Corynebacterium pseudotuberculosis</it>. The pathogenesis of CLA is a slow process, and produces a chronic rather than an acute disease state. Acute phase proteins (APP) such as haptoglobin (Hp) serum amyloid A (SAA) and α<sub>1 </sub>acid glycoprotein (AGP) are produced by the liver and released into the circulation in response to pro-inflammatory cytokines. The concentration of Hp in serum increases in experimental CLA but it is not known if SAA and AGP respond in parallel or have differing response profiles.</p> <p>Results</p> <p>The concentration in serum of Hp, SAA and AGP in 6 sheep challenged with 2 × 10<sup>5 </sup>cells of <it>C. pseudotuberculosis </it>showed significant increases (P < 0.05) compared to 3 unchallenged control sheep. By day 7 post infection. (p.i.) the Hp and SAA concentrations reached mean (± SEM) values of 1.65 ± 0.21 g/L and 18.1 ± 5.2 mg/L respectively. Thereafter, their concentrations fell with no significant difference to those of the control sheep by day 18 p.i.. In contrast, the serum AGP concentration in infected sheep continued to rise to a peak of 0.38 ± 0.05 g/L on day 13 p.i., after which a slow decline occurred, although the mean concentration remained significantly higher (P < 0.05) than the control group up to 29 days p.i.. Specific IgG to phospholidase D of <it>C. pseudotuberculosis </it>became detectable at 11 days p.i. and continued to rise throughout the experiment.</p> <p>Conclusion</p> <p>The serum concentrations of Hp, SAA and AGP were raised in sheep in an experimental model of CLA. An extended response was found for AGP which occurred at a point when the infection was likely to have been transforming from an acute to a chronic phase. The results suggest that AGP could have a role as a marker for chronic conditions in sheep.</p

    Gene Properties and Chromatin State Influence the Accumulation of Transposable Elements in Genes

    Get PDF
    Transposable elements (TEs) are mobile DNA sequences found in the genomes of almost all species. By measuring the normalized coverage of TE sequences within genes, we identified sets of genes with conserved extremes of high/low TE density in the genomes of human, mouse and cow and denoted them as ‘shared upper/lower outliers (SUOs/SLOs)’. By comparing these outlier genes to the genomic background, we show that a large proportion of SUOs are involved in metabolic pathways and tend to be mammal-specific, whereas many SLOs are related to developmental processes and have more ancient origins. Furthermore, the proportions of different types of TEs within human and mouse orthologous SUOs showed high similarity, even though most detectable TEs in these two genomes inserted after their divergence. Interestingly, our computational analysis of polymerase-II (Pol-II) occupancy at gene promoters in different mouse tissues showed that 60% of tissue-specific SUOs show strong Pol-II binding only in embryonic stem cells (ESCs), a proportion significantly higher than the genomic background (37%). In addition, our analysis of histone marks such as H3K4me3 and H3K27me3 in mouse ESCs also suggest a strong association between TE-rich genes and open-chromatin at promoters. Finally, two independent whole-transcriptome datasets show a positive association between TE density and gene expression level in ESCs. While this study focuses on genes with extreme TE densities, the above results clearly show that the probability of TE accumulation/fixation in mammalian genes is not random and is likely associated with different factors/gene properties and, most importantly, an association between the TE insertion/fixation rate and gene activity status in ES cells

    Multi-Platform Next-Generation Sequencing of the Domestic Turkey (Meleagris gallopavo): Genome Assembly and Analysis

    Get PDF
    The combined application of next-generation sequencing platforms has provided an economical approach to unlocking the potential of the turkey genome

    Act now against new NHS competition regulations: an open letter to the BMA and the Academy of Medical Royal Colleges calls on them to make a joint public statement of opposition to the amended section 75 regulations.

    Get PDF

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Effect of immunisation against gonadotrophin releasing hormone isoforms (mammalian GnRH-I, chicken GnRH-II and lamprey GnRH-III) on murine spermatogenesis.

    No full text
    In mammals, the hypothalamic decapeptide, gonadotrophin releasing hormone (GnRH-I), is regarded as the major fertility regulating peptide. However, a range of isoforms also exists, varying only in the core region between amino acids 5-8. The physiological role of two of these, GnRH-II and GnRH-III, remains controversial, particularly with regard to fertility. The basis of the present study was to examine whether there is potential for GnRH-II and GnRH-III to be developed into highly specific vaccines, and to determine what the impact of their neutralisation would be on fertility. Computer modelling was used to predict how many common amino acids could be sequentially removed from the N-terminus, without loss of conformational structure. Sequences predicted to retain structure, were synthesised and conjugated to tetanus toxoid. Male mice were actively immunised, in study weeks 0, 2, 4 and 6 and peptide specific ELISA carried out. Mice immunised with TT-GnRH-I, TT-GnRH-II and TT-GnRH-III conjugates induced high antibody titres to the respective peptide. However, serum from TT-GnRH-I treated mice showed cross-reactivity to GnRH-II and GnRH-III peptides, and serum from TT-GnRH-II immunised mice showed cross-reactivity to GnRH-III. On the other hand, serum from only two of the TT-GnRH-III treated animals showed cross-reactivity to GnRH-II. Histological examination of the testes enabled comparative quantification of the disruption to spermatogenesis. Immunisation against TT-GnRH-I and TT-GnRH-III caused 66% and 68%, respectively, of seminiferous tubules viewed to show evidence of spermatogenesis, compared with 82% and 92% against TT-GnRH-II and untreated controls, respectively. Endocrine analysis revealed that only the TT-GnRH-I immunised animals showed significant reduction (p<0.05) in follicle stimulating hormone, while testosterone levels were reduced in the TT-GnRH-I and TT-GnRH-III treated animals. Taken together, our data suggests that GnRH-I and GnRH-III are implicated in spermatogenesis, unlike GnRH-II.Comparative StudyJournal ArticleSCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore