73 research outputs found

    <i>Trypanosoma evansi</i>: Genetic variability detected using amplified restriction fragment length polymorphism (AFLP) and random amplified polymorphic DNA (RAPD) analysis of Kenyan isolates

    Get PDF
    We compared two methods to generate polymorphic markers to investigate the population genetics of Trypanosoma evansi; random amplified polymorphic DNA (RAPD) and amplified restriction fragment length polymorphism (AFLP) analyses. AFLP accessed many more polymorphisms than RAPD. Cluster analysis of the AFLP data showed that 12 T.evansi isolates were very similar (β€˜type A’) whereas 2 isolates differed substantially (β€˜type B’). Type A isolates have been generally regarded as genetically identical but AFLP analysis was able to identify multiple differences between them and split the type A T. evansi isolates into two distinct clades

    Chemical Profiling and in vitro Testing for PCSK9 Inhibition of Coffee Cascara Extract

    Get PDF
    Coffee cascara is a by-product generated from coffee processing. It has been discarded as an agricultural waste.Β  In order to reduce the environmental problems caused by coffee processing, this study aimed to investigate the effect of fresh coffee cascara extract (CCE) on the inhibition of PCSK9 which is an enzyme that can increase low-density plasma lipoprotein (LDL) cholesterol by destructing LDL receptor.Β  Moreover, the CCE chemical profile was identified by the thin-layer chromatography (TLC) technique together with diffusion-ordered NMR spectroscopy (DOSY). The chemical profile analysis results showed that trigonelline, caffeine, and chlorogenic acid were present in CCE, and its PCSK9 inhibitory activity screening showed that CCE at concentrations of 0.25 and 0.50 mg/mL reduced the amount of PCSK9 by 72 and 78%, respectively. Β These results revealed that coffee cascara provides novel applications in the nutraceutical industry

    Teaching macromolecules and its metabolism sequentially improves learning abilityin biochemistry course of medical students

    Get PDF
    Biochemistry for medical student is a subject that focuses on structure and function of macromolecules and their metabolic pathways in living organism. This subject is quite difficult for students to understand because they have to imagine the interactions that occur in the cell at the molecular level. Learning sequence of each topic is exhibited as an important factor that may affect learning ability of students. Therefore, in this study the sequences of topics were evaluated by comparing between the parts of macromolecules either teaching separately or in combination with its metabolism sequentially. The analysis was done using the examination scores of different medical student groups at Srinakharinwirot University that studied different topic sequences. The data analysis revealed that the new topic sequence rearrangement in which each of macromolecules was taught following by its metabolic pathway was significantly better (p &lt; 0.05) than the former sequences. This data demonstrated that the improved topic sequences are important for learning ability which will be useful for teaching development in the future

    Fetal Hemoglobin Inducers from the Natural World: A Novel Approach for Identification of Drugs for the Treatment of Ξ²-Thalassemia and Sickle-Cell Anemia

    Get PDF
    The objective of this review is to present examples of lead compounds identified from biological material (fungi, plant extracts and agro-industry material) and of possible interest in the field of a pharmacological approach to the therapy of Ξ²-thalassemia using molecules able to stimulate production of fetal hemoglobin (HbF) in adults. Concerning the employment of HbF inducers as potential drugs for pharmacological treatment of Ξ²-thalassemia, the following conclusions can be reached: (i) this therapeutic approach is reasonable, on the basis of the clinical parameters exhibited by hereditary persistence of fetal hemoglobin patients, (ii) clinical trials (even if still limited) employing HbF inducers were effective in ameliorating the symptoms of Ξ²-thalassemia patients, (iii) good correlation of in vivo and in vitro results of HbF synthesis and Ξ³-globin mRNA accumulation indicates that in vitro testing might be predictive of in vivo responses and (iv) combined use of different inducers might be useful to maximize HbF, both in vitro and in vivo. In this review, we present three examples of HbF inducers from the natural world: (i) angelicin and linear psoralens, contained in plant extracts from Angelica arcangelica and Aegle marmelos, (ii) resveratrol, a polyphenol found in grapes and several plant extracts and (iii) rapamycin, isolated from Streptomyces hygroscopicus

    Autophagy in the Thymic Epithelium Is Dispensable for the Development of Self-Tolerance in a Novel Mouse Model

    Get PDF
    The thymic epithelium plays critical roles in the positive and negative selection of T cells. Recently, it was proposed that autophagy in thymic epithelial cells is essential for the induction of T cell tolerance to self antigens and thus for the prevention of autoimmune diseases. Here we have tested this hypothesis using mouse models in which autophagy was blocked specifically in epithelial cells expressing keratin 14 (K14), including the precursor of thymic epithelial cells. While the thymic epithelial cells of mice carrying the floxed Atg7 gene (ATG7 f/f) showed a high level of autophagy, as determined by LC3 Western blot analysis and fluorescence detection of the recombinant green fluorescent protein (GFP)-LC3 reporter protein on autophagosomes, autophagy in the thymic epithelium was efficiently suppressed by deletion of the Atg7 gene using the Cre-loxP system (ATG7 f/f K14-Cre). Suppression of autophagy led to the massive accumulation of p62/sequestosome 1 (SQSTM1) in thymic epithelial cells. However, the structure of the thymic epithelium as well as the organization and the size of the thymus were not altered in mutant mice. The ratio of CD4 to CD8-positive T cells, as well as the frequency of activated (CD69+) CD4 T cells in lymphoid organs, did not differ between mice with autophagy-competent and autophagy-deficient thymic epithelium. Inflammatory infiltrating cells, potentially indicative of autoimmune reactions, were present in the liver, lung, and colon of a similar fraction of ATG7 f/f and ATG7 f/f K14-Cre mice. In contrast to previously reported mice, that had received an autophagy-deficient thymus transplant, ATG7 f/f K14-Cre mice did not suffer from autoimmunity-induced weight loss. In summary, the results of this study suggest that autophagy in the thymic epithelium is dispensable for negative selection of autoreactive T cells

    Antimetastatic Potential of Rhodomyrtone on Human Chondrosarcoma SW1353 Cells

    No full text
    Chondrosarcoma is primary bone cancer, with the forceful capacity to cause local invasion and distant metastasis, and has a poor prognosis. Cancer metastasis is a complication of most cancers; it is one of the leading causes of cancer-related death. Rhodomyrtone is a pure compound that has been shown to induce apoptosis and antimetastasis in skin cancer. However, the inhibitory effect of rhodomyrtone on human chondrosarcoma cell metastasis is largely unknown. Effect of rhodomyrtone on cell viability in SW1353 cell was determined by MTT assay. Antimigration, anti-invasion, and antiadhesion were carried out to investigate the antimetastatic potential of rhodomyrtone on SW1353 cells. Gelatin zymography was performed to determine matrix metalloproteinase-2 (MMP-2) and MMP-9 activities. The effect of rhodomyrtone on the underlying mechanisms was performed by Western blot analysis. The results demonstrated that rhodomyrtone reduced cell viability of SW1353 cells at the low concentration (80%. Rhodomyrtone at the subcytotoxic concentrations (0.5, 1.5, and 3 μg/mL) significantly inhibited cell migration, invasion, and adhesion of SW1353 cells in a dose-dependent fashion. Protein expression of integrin Ξ±v, integrin Ξ²3, and the downstream migratory proteins including focal adhesion kinase (FAK) and the phosphorylation of serine/threonine AKT, Ras, RhoA, Rac1, and Cdc42 were inhibited after treatment with rhodomyrtone. Moreover, we found that rhodomyrtone decreased the protein level of MMP-2 and MMP-9 as well as the enzyme activity in SW1353 cells. Meanwhile, tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2 expression was increased in a dose-dependent fashion. Besides, rhodomyrtone dramatically inhibited the expression of growth factor receptor-bound protein-2 (GRB2) and the phosphorylated form of extracellular signal regulation kinase1/2 (ERK1/2) and c-Jun N-terminal kinase1/2 (JNK1/2). These results indicated that rhodomyrtone inhibited SW1353 cell migration, invasion, and metastasis by suppressing integrin Ξ±vΞ²3/FAK/AKT/small Rho GTPases pathway as well as downregulation of MMP-2/9 via ERK and JNK signal inhibition. These findings indicate that rhodomyrtone possessed the antimetastasis activity that may be used for antimetastasis therapy in the future

    Expression of recombinant human follicle stimulating hormone mRNA in Chinese hamster ovary cells under different promoters

    No full text
    Levels of recombinant human follicle stimulating hormone (r-hFSH) mRNA expressed under butyrate and zinc treatment were compared in two CHO-K1 derived cell lines. In King cells under the metallothionein promoter, butyrate induced the increase in both r-hFSH productivity (q(FSH)) and mRNA levels proportionally. In the presence of 1 mM butyrate and 40 mu M zinc, a 4-fold increase in q(FSH) and mRNA levels was achieved as compared to zinc (40) alone; this wasa approximately 6 times higher than in serum free medium. In Darren cells under the beta-actin promotor butyrate induced an increase in q(SFH) but not in mRNA levels

    Apoptosis Induction Associated with Enhanced ER Stress Response and Up-Regulation of c-Jun/p38 MAPK Proteins in Human Cervical Cancer Cells by <i>Colocasia esculenta</i> var. <i>aquatilis</i> Hassk Extract

    No full text
    Colocasia esculenta var. Aquatilis Hassk, elephant ear (CF-EE) has been widely used as traditional food and medicine. It also shows other therapeutic properties, such as antimicrobial and anti-cancer activity. In this study, we aim to investigate the effect of CF-EE extract on apoptosis induction associated with ER stress in cervical cancer HeLa cells. Cell viability was determined by MTT assay. Assessments of nuclear morphological changes, mitochondrial membrane potential, and intracellular reactive oxygen species (ROS) production were conducted by hoeshst33342, JC-1, and DCFH-DA fluorescence staining, respectively. Sub-G1 DNA content was analyzed by flow cytometry, and protein expression was determined by Western blotting. The results demonstrate that CF-EE extract suppressed HeLa cell growth and induced nuclear condensation and apoptotic bodies. There was also a loss of mitochondrial membrane potential and increased apoptosis marker protein expression, including Bax, cleaved-caspase-7, and cleaved-PARP. In addition, the results show that CF-EE extract induced ROS, increased ER stress proteins (GRP78 and CHOP), enhanced p38 and c-Jun phosphorylation, and inhibited Akt expression in HeLa cells. In summary, CF-EE extract induced apoptotic cell death-associated ROS-induced ER stress and the MAPK/AKT signaling pathway. Therefore, CF-EE extract has anticancer therapeutic potential for cervical cancer treatment in the future
    • …
    corecore