136 research outputs found

    MicroRNAs Associated with Metastatic Prostate Cancer

    Get PDF
    Metastasis is the most common cause of death of prostate cancer patients. Identification of specific metastasis biomarkers and novel therapeutic targets is considered essential for improved prognosis and management of the disease. MicroRNAs (miRNAs) form a class of non-coding small RNA molecules considered to be key regulators of gene expression. Their dysregulation has been shown to play a role in cancer onset, progression and metastasis, and miRNAs represent a promising new class of cancer biomarkers. The objective of this study was to identify down- and up-regulated miRNAs in prostate cancer that could provide potential biomarkers and/or therapeutic targets for prostate cancer metastasis. into NOD/SCID mice, a methodology that tends to preserve properties of the original cancers (e.g., tumor heterogeneity, genetic profiles).Differentially expressed known miRNAs, isomiRs and 36 novel miRNAs were identified. A number of these miRNAs (21/104) have previously been reported to show similar down- or up-regulation in prostate cancers relative to normal prostate tissue, and some of them (e.g., miR-16, miR-34a, miR-126*, miR-145, miR-205) have been linked to prostate cancer metastasis, supporting the validity of the analytical approach.The use of metastatic and non-metastatic prostate cancer subrenal capsule xenografts derived from one patient's cancer makes it likely that the differentially expressed miRNAs identified in this study include potential biomarkers and/or therapeutic targets for human prostate cancer metastasis

    Numerical Observation of the Rescattering Wave Packet in Laser-Atom Interactions

    Get PDF
    We present a full-quantum nonperturbative method to study the electron rescattering process in the intense laser-atom interactions. We separate the ionized wave function from the background by solving the time-integral equation. Imposing the incoming boundary condition on the wave function, we reproduce the motion of the rescattering wave packet predicted by the rescattering theory. Our calculated rescattering energies differ significantly from the semiclassical ones. The difference would be substantial for the evaluation of the rescattering induced dynamics such as the molecular dissociation

    Structural study on hole-doped superconductors Pr1-xSrxFeAsO

    Full text link
    The structural details in Pr1-xSrxFeAsO (1111) superconducting system are analyzed using data obtained from synchrotron X-ray diffraction and the structural parameters are carefully studied as the system is moving from non-superconducting to hole-doped superconducting with the Sr concentration. Superconductivity emerges when the Sr doping amount reaches 0.221. The linear increase of the lattice constants proves that Sr is successfully introduced into the system and its concentration can accurately be determined by the electron density analyses. The evolution of structural parameters with Sr concentration in Pr1-xSrxFeAsO and their comparison to other similar structural parameters of the related Fe-based superconductors suggest that the interlayer space between the conducting As-Fe-As layer and the insulating Pr-O-Pr layer is important for improving Tc in the hole-doped (1111) superconductors, which seems to be different from electron-doped systems.Comment: 17 pages, 7 figures, 1 tabl

    Delayed crystallization of ultrathin Gd2O3 layers on Si(111) observed by in situ X-ray diffraction

    Get PDF
    We studied the early stages of Gd2O3 epitaxy on Si(111) in real time by synchrotron-based, high-resolution X-ray diffraction and by reflection high-energy electron diffraction. A comparison between model calculations and the measured X-ray scattering, and the change of reflection high-energy electron diffraction patterns both indicate that the growth begins without forming a three-dimensional crystalline film. The cubic bixbyite structure of Gd2O3 appears only after a few monolayers of deposition

    Estrogen-dependent dynamic profile of eNOS-DNA associations in prostate cancer

    Get PDF
    In previous work we have documented the nuclear translocation of endothelial NOS (eNOS) and its participation in combinatorial complexes with Estrogen Receptor Beta (ERβ) and Hypoxia Inducible Factors (HIFs) that determine localized chromatin remodeling in response to estrogen (E2) and hypoxia stimuli, resulting in transcriptional regulation of genes associated with adverse prognosis in prostate cancer (PCa). To explore the role of nuclear eNOS in the acquisition of aggressive phenotype in PCa, we performed ChIP-Sequencing on chromatin-associated eNOS from cells from a primary tumor with poor outcome and from metastatic LNCaP cells. We found that: 1. the eNOS-bound regions (peaks) are widely distributed across the genome encompassing multiple transcription factors binding sites, including Estrogen Response Elements. 2. E2 increased the number of peaks, indicating hormone-dependent eNOS re-localization. 3. Peak distribution was similar with/without E2 with ≈ 55% of them in extragenic DNA regions and an intriguing involvement of the 5′ domain of several miRs deregulated in PCa. Numerous potentially novel eNOS-targeted genes have been identified suggesting that eNOS participates in the regulation of large gene sets. The parallel finding of downregulation of a cluster of miRs, including miR-34a, in PCa cells associated with poor outcome led us to unveil a molecular link between eNOS and SIRT1, an epigenetic regulator of aging and tumorigenicity, negatively regulated by miR-34a and in turn activating eNOS. E2 potentiates miR-34a downregulation thus enhancing SIRT1 expression, depicting a novel eNOS/SIRT1 interplay fine-tuned by E2-activated ER signaling, and suggesting that eNOS may play an important role in aggressive PCa

    The NPH4

    Full text link

    Emergence of magnetic long-range order in frustrated pyrochlore Nd2_2Ir2_2O7_7 with metal-insulator transition

    Full text link
    In this study, we performed powder neutron diffraction and inelastic scattering measurements of frustrated pyrochlore Nd2_2Ir2_2O7_7, which exhibits a metal-insulator transition at a temperature TMIT_{\rm MI} of 33 K. The diffraction measurements revealed that the pyrochlore has an antiferromagnetic long-range structure with propagation vector q0\vec{q}_{0} of (0,0,0) and that it grows with decreasing temperature below 15 K. This structure was analyzed to be of the all-in all-out type, consisting of highly anisotropic Nd3+^{3+} magnetic moments of magnitude 2.3±0.42.3\pm0.4μB\mu_{\rm B}, where μB\mu_{\rm B} is the Bohr magneton. The inelastic scattering measurements revealed that the Kramers ground doublet of Nd3+^{3+} splits below TMIT_{\rm MI}. This suggests the appearance of a static internal magnetic field at the Nd sites, which probably originates from a magnetic order consisting of Ir4+^{4+} magnetic moments. Here, we discuss a magnetic structure model for the Ir order and the relation of the order to the metal-insulator transition in terms of frustration.Comment: 6 pages, 1 table, 3 figure

    miR-100-5p inhibition induces apoptosis in dormant prostate cancer cells and prevents the emergence of castration-resistant prostate cancer

    Get PDF
    Carcinoma of the prostate is the most common cancer in men. Treatment of aggressive prostate cancer involves a regiment of radical prostectomy, radiation therapy, chemotherapy and hormonal therapy. Despite significant improvements in the last decade, the treatment of prostate cancer remains unsatisfactory, because a significant fraction of prostate cancers develop resistance to multiple treatments and become incurable. This prompts an urgent need to investigate the molecular mechanisms underlying the evolution of therapy-induced resistance of prostate cancer either in the form of castration-resistant prostate cancer (CRPC) or transdifferentiated neuroendocrine prostate cancer (NEPC). By analyzing micro-RNA expression profiles in a set of patient-derived prostate cancer xenograft tumor lines, we identified miR-100-5p as one of the key molecular components in the initiation and evolution of androgen ablation therapy resistance in prostate cancer. In vitro results showed that miR-100-5p is required for hormone-independent survival and proliferation of prostate cancer cells post androgen ablation. In Silico target predictions revealed that miR-100-5p target genes are involved in key aspects of cancer progression, and are associated with clinical outcome. Our results suggest that mir-100-5p is a possible therapeutic target involved in prostate cancer progression and relapse post androgen ablation therapy

    Arabidopsis RPT2a, 19S Proteasome Subunit, Regulates Gene Silencing via DNA Methylation

    Get PDF
    The ubiquitin/proteasome pathway plays a crucial role in many biological processes. Here we report a novel role for the Arabidopsis 19S proteasome subunit RPT2a in regulating gene activity at the transcriptional level via DNA methylation. Knockout mutation of the RPT2a gene did not alter global protein levels; however, the transcriptional activities of reporter transgenes were severely reduced compared to those in the wild type. This transcriptional gene silencing (TGS) was observed for transgenes under control of either the constitutive CaMV 35S promoter or the cold-inducible RD29A promoter. Bisulfite sequencing analysis revealed that both the transgene and endogenous RD29A promoter regions were hypermethylated at CG and non-CG contexts in the rpt2a mutant. Moreover, the TGS of transgenes driven by the CaMV 35S promoters was released by treatment with the DNA methylation inhibitor 5-aza-2′-deoxycytidine, but not by application of the inhibitor of histone deacetylase Trichostatin A. Genetic crosses with the DNA methyltransferase met1 single or drm1drm2cmt3 triple mutants also resulted in a release of CaMV 35S transgene TGS in the rpt2a mutant background. Increased methylation was also found at transposon sequences, suggesting that the 19S proteasome containing AtRPT2a negatively regulates TGS at transgenes and at specific endogenous genes through DNA methylation

    Alternative splicing enriched cDNA libraries identify breast cancer-associated transcripts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alternative splicing (AS) is a central mechanism in the generation of genomic complexity and is a major contributor to transcriptome and proteome diversity. Alterations of the splicing process can lead to deregulation of crucial cellular processes and have been associated with a large spectrum of human diseases. Cancer-associated transcripts are potential molecular markers and may contribute to the development of more accurate diagnostic and prognostic methods and also serve as therapeutic targets. Alternative splicing-enriched cDNA libraries have been used to explore the variability generated by alternative splicing. In this study, by combining the use of trapping heteroduplexes and RNA amplification, we developed a powerful approach that enables transcriptome-wide exploration of the AS repertoire for identifying AS variants associated with breast tumor cells modulated by <it>ERBB2</it> (<it>HER-2/neu</it>) oncogene expression.</p> <p>Results</p> <p>The human breast cell line (C5.2) and a pool of 5 ERBB2 over-expressing breast tumor samples were used independently for the construction of two AS-enriched libraries. In total, 2,048 partial cDNA sequences were obtained, revealing 214 alternative splicing sequence-enriched tags (ASSETs). A subset with 79 multiple exon ASSETs was compared to public databases and reported 138 different AS events. A high success rate of RT-PCR validation (94.5%) was obtained, and 2 novel AS events were identified. The influence of <it>ERBB2</it>-mediated expression on AS regulation was evaluated by capillary electrophoresis and probe-ligation approaches in two mammary cell lines (Hb4a and C5.2) expressing different levels of <it>ERBB2</it>. The relative expression balance between AS variants from 3 genes was differentially modulated by <it>ERBB2</it> in this model system.</p> <p>Conclusions</p> <p>In this study, we presented a method for exploring AS from any RNA source in a transcriptome-wide format, which can be directly easily adapted to next generation sequencers. We identified AS transcripts that were differently modulated by <it>ERBB2</it>-mediated expression and that can be tested as molecular markers for breast cancer. Such a methodology will be useful for completely deciphering the cancer cell transcriptome diversity resulting from AS and for finding more precise molecular markers.</p
    corecore