163 research outputs found

    Evolution of the social network of scientific collaborations

    Full text link
    The co-authorship network of scientists represents a prototype of complex evolving networks. By mapping the electronic database containing all relevant journals in mathematics and neuro-science for an eight-year period (1991-98), we infer the dynamic and the structural mechanisms that govern the evolution and topology of this complex system. First, empirical measurements allow us to uncover the topological measures that characterize the network at a given moment, as well as the time evolution of these quantities. The results indicate that the network is scale-free, and that the network evolution is governed by preferential attachment, affecting both internal and external links. However, in contrast with most model predictions the average degree increases in time, and the node separation decreases. Second, we propose a simple model that captures the network's time evolution. Third, numerical simulations are used to uncover the behavior of quantities that could not be predicted analytically.Comment: 14 pages, 15 figure

    Interferometric Astrometry of the Low-mass Binary Gl 791.2 (= HU Del) Using Hubble Space Telescope Fine Guidance Sensor 3: Parallax and Component Masses

    Full text link
    With fourteen epochs of fringe tracking data spanning 1.7y from Fine Guidance Sensor 3 we have obtained a parallax (pi_abs=113.1 +- 0.3 mas) and perturbation orbit for Gl 791.2A. Contemporaneous fringe scanning observations yield only three clear detections of the secondary on both interferometer axes. They provide a mean component magnitude difference, Delta V = 3.27 +- 0.10. The period (P = 1.4731 yr) from the perturbation orbit and the semi-major axis (a = 0.963 +- 0.007 AU) from the measured component separations with our parallax provide a total system mass M_A + M_B = 0.412 +- 0.009 M_sun. Component masses are M_A=0.286 +- 0.006 M_sun and M_B = 0.126 +- 0.003 M_sun. Gl 791.2A and B are placed in a sparsely populated region of the lower main sequence mass-luminosity relation where they help define the relation because the masses have been determined to high accuracy, with errors of only 2%.Comment: 19 pages, 5 figures. The paper is to appear in August 2000 A

    Dynamical Masses for Low-Mass Pre-Main Sequence Stars: A Preliminary Physical Orbit for HD 98800 B

    Full text link
    We report on Keck Interferometer observations of the double-lined binary (B) component of the quadruple pre-main sequence (PMS) system HD 98800. With these interferometric observations combined with astrometric measurements made by the Hubble Space Telescope Fine Guidance Sensors (FGS), and published radial velocity observations we have estimated preliminary visual and physical orbits of the HD 98800 B subsystem. Our orbit model calls for an inclination of 66.8 ±\pm 3.2 deg, and allows us to infer the masses and luminosities of the individual components. In particular we find component masses of 0.699 ±\pm 0.064 and 0.582 ±\pm 0.051 M_{\sun} for the Ba (primary) and Bb (secondary) components respectively. Modeling of the component SEDs finds temperatures and luminosities in agreement with previous studies, and coupled with the component mass estimates allows for comparison with PMS models in the low-mass regime with few empirical constraints. Solar abundance models seem to under-predict the inferred component temperatures and luminosities, while assuming slightly sub-solar abundances bring the models and observations into better agreement. The present preliminary orbit does not yet place significant constraints on existing pre-main sequence stellar models, but prospects for additional observations improving the orbit model and component parameters are very good.Comment: 20 pages, 6 figures, ApJ in press; tables 2 and 3 to be included in ApJ versio

    A comparative analysis of genome-wide chromatin immunoprecipitation data for mammalian transcription factors

    Get PDF
    Genome-wide location analysis (ChIP-chip, ChIP-PET) is a powerful technique to study mammalian transcriptional regulation. In order to obtain a basic understanding of the location data generated for mammalian transcription factors and potential issues in their analysis, we conducted a comparative study of eight independent ChIP experiments involving six different transcription factors in human and mouse. Our cross-study comparisons, to the best of our knowledge the first to analyze multiple datasets, revealed the importance of carefully chosen genomic controls in the de novo identification of key transcription factor binding motifs, raised issues about the interpretation of ubiquitously occurring sequence motifs, and demonstrated the clustering tendency of protein-binding regions for certain transcription factors

    Observational and Dynamical Characterization of Main-Belt Comet P/2010 R2 (La Sagra)

    Full text link
    We present observations of comet-like main-belt object P/2010 R2 (La Sagra) obtained by Pan-STARRS 1 and the Faulkes Telescope-North on Haleakala in Hawaii, the University of Hawaii 2.2 m, Gemini-North, and Keck I telescopes on Mauna Kea, the Danish 1.54 m telescope at La Silla, and the Isaac Newton Telescope on La Palma. An antisolar dust tail is observed from August 2010 through February 2011, while a dust trail aligned with the object's orbit plane is also observed from December 2010 through August 2011. Assuming typical phase darkening behavior, P/La Sagra is seen to increase in brightness by >1 mag between August 2010 and December 2010, suggesting that dust production is ongoing over this period. These results strongly suggest that the observed activity is cometary in nature (i.e., driven by the sublimation of volatile material), and that P/La Sagra is therefore the most recent main-belt comet to be discovered. We find an approximate absolute magnitude for the nucleus of H_R=17.9+/-0.2 mag, corresponding to a nucleus radius of ~0.7 km, assuming an albedo of p=0.05. Using optical spectroscopy, we find no evidence of sublimation products (i.e., gas emission), finding an upper limit CN production rate of Q_CN<6x10^23 mol/s, from which we infer an H2O production rate of Q_H2O<10^26 mol/s. Numerical simulations indicate that P/La Sagra is dynamically stable for >100 Myr, suggesting that it is likely native to its current location and that its composition is likely representative of other objects in the same region of the main belt, though the relatively close proximity of the 13:6 mean-motion resonance with Jupiter and the (3,-2,-1) three-body mean-motion resonance with Jupiter and Saturn mean that dynamical instability on larger timescales cannot be ruled out.Comment: 23 pages, 13 figures, accepted for publication in A

    The First Definitive Binary Orbit Determined with the Hubble Space Telescope Fine Guidance Sensors: Wolf 1062 (Gliese 748)

    Get PDF
    The M dwarf binary, Wolf 1062 (Gliese 748), has been observed with the Hubble Space Telescope (HST) Fine Guidance Sensor 3 in the transfer function scan mode to determine the apparent orbit. This is the first orbit defined fully and exclusively with HST, and is the most accurate definitive orbit for any resolved, noneclipsing system. The orbital period is 2.4490 ± 0.0119 yr and the semimajor axis is 01470 ± 00007—both quantities are now known to better than 1%. Using the weighted mean of seven parallax measurements and these HST data, we find the system mass to be 0.543 ± 0.031 M⊙, where the error of 6% is due almost entirely to the parallax error. An estimated fractional mass from the infrared brightness ratio and infrared mass-luminosity relation yields a mass for the primary of 0.37 M⊙, and the secondary falls in the regime of very low mass stars, with a mass of only 0.17 M⊙

    Li Wenliang, a face to the frontline healthcare worker? The first doctor to notify the emergence of the SARS-CoV-2 (COVID-19) outbreak

    Get PDF
    Dr Li Wenliang, who lost his life to the novel coronavirus, SARS-CoV-2, became the face of the threat of SARS-CoV-2 to frontline workers, the clinicians taking care of patients. Li, 34, was an ophthalmologist at Wuhan Central Hospital. On 30th December, 2019, when the Wuhan municipal health service sent out an alert, he reportedly warned a closed group of ex-medical school classmates on the WeChat social media site of “Seven cases of severe acute respiratory syndrome (SARS) like illness with links with the Huanan Seafood Wholesale Market” at his hospital. He was among eight people reprimanded by security officers for “spreading rumours”. In a tragic turn of events, he subsequently contracted SARS-CoV-2 and, after a period in intensive care, died on the morning of Friday 7th February, 2020 (South China Morning Post, 2020). This case is a stark reminder of the risks of emerging disease outbreaks for healthcare workers (HCWs). Dr Li Wenliang’s name is added to the long list of HCW that were at the forefront of outbreaks of SARS, Ebola, MERS and now SARS-CoV-2. It is important to recognise that it was the clinicians in Wuhan who sounded the alarm about the emergence of SARS-CoV-2 which was rapidly identified after these clinicians sent samples to a reference laboratory for next generation sequencing (NGS) (Zhou et al., 2020)
    corecore