1,228 research outputs found

    Competing Roles of Ca<sup>2+</sup>and Nonmuscle Myosin IIA on the Dynamics of the Metastasis-Associated Protein S100A4

    Get PDF
    The calcium-binding protein S100A4 plays an important role in a wide range of biological processes such as cell motility, invasion, angiogenesis, survival, differentiation, contractility, and tumor metastasis and interacts with a range of partners. To understand the functional roles and interplay of S100A4 binding partners such as Ca2+and nonmuscle myosin IIA (NMIIA), we used molecular dynamics simulations to investigate apo S100A4 and four holo S100A4 structures: S100A4 bound to Ca2+, S100A4 bound to NMIIA, S100A4 bound to Ca2+and NMIIA, and a mutated S100A4 bound to Ca2+and NMIIA. Our results show that two competing factors, namely, Ca2+-induced activation and NMIIA-induced inhibition, modulate the dynamics of S100A4 in a competitive manner. Moreover, Ca2+binding results in enhanced dynamics, regulating the interactions of S100A4 with NMIIA, while NMIIA induces asymmetric dynamics between the chains of S100A4. The results also show that in the absence of Ca2+the S100A4-NMIIA interaction is weak compared to that of between S100A4 bound to Ca2+and NMIIA, which may offer a quick response to dropping calcium levels. In addition, certain mutations are shown to play a marked role on the dynamics of S100A4. The results described here contribute to understanding the interactions of S100A4 with NMIIA and the functional roles of Ca2+, NMIIA, and certain mutations on the dynamics of S100A4. The results of this study could be interesting for the development of inhibitors that exploit the shift of balance between the competing roles of Ca2+and NMIIA

    Unbreaking Assemblies in Molecular Simulations with Periodic Boundaries

    Get PDF
    This data set contains all examples shown in figure 2 of the associated manuscript. Every example contains the original GRO, XTC, TPR and a folder called `whole` which contains the whole.gro, whole.xtc and a README with the input parameters. For the Hii example there is also a segmentation folder which contains the output of the leaflet segmentation. Additionally the folders for generating the SI have been added in v1.1. - dipeptides - self-assembly - inverted hexagonal - large vesicle - undulate membrane (SI) - speed comparison (SI)The code for mdvwhole can be installed with `pip install mdvwhole` (python >= 3.8). The code is available at `https://github.com/BartBruininks/mdvwhole`

    Backmapping triangulated surfaces to coarse-grained membrane models

    Get PDF
    Many biological processes involve large-scale changes in membrane shape. Computer simulations of these processes are challenging since they occur across a wide range of spatiotemporal scales that cannot be investigated in full by any single current simulation technique. A potential solution is to combine different levels of resolution through a multiscale scheme. Here, we present a multiscale algorithm that backmaps a continuum membrane model represented as a dynamically triangulated surface (DTS) to its corresponding molecular model based on the coarse-grained (CG) Martini force field. Thus, we can use DTS simulations to equilibrate slow large-scale membrane conformational changes and then explore the local properties at CG resolution. We demonstrate the power of our method by backmapping a vesicular bud induced by binding of Shiga toxin and by transforming the membranes of an entire mitochondrion to near-atomic resolution. Our approach opens the way to whole cell simulations at molecular detail

    One step forward, two steps back – requiring ministerial approval for all ‘non-therapeutic\' health research involving minors

    Get PDF
    The new National Health Act has clarified that children may take part in ‘non-therapeutic\' research (NTR) and the age at which they may provide independent consent to such research, viz. at legal majority. However, the Act will require consent from the Minister of Health for all research classed as NTR and involving minors regardless of the level of risk. This requirement is overly broad. It will require that low-risk research without direct benefits, which might be adequately reviewed by an accredited research ethics committee (REC), must also be reviewed by the Minister. As it currently stands this requirement serves no plausible ethical purpose, will cause delays and discourage essential research on the needs of children, and may inspire researchers and RECs alike to ‘foil the system\'. We argue that in the long term there should be comprehensive law reform for child research. However, in the short term, amendments should be made to the Act to narrow the scope of this provision. The amendment should require ministerial consent for research that is currently not approvable by an REC in terms of national ethical guidelines, namely, research that does not hold out direct benefit but presents more than a minor increase over minimal risk. If our law reform recommendations are rejected, we favour the delegation of this task to RECs because, if they receive appropriate training, they should be competent to conduct it. We accept the disadvantages, namely that the same body will review protocols twice from slightly different perspectives and that certain categories of research will remain unapprovable.South African Medical Journal Vol. 97 (2) 2007: pp.200-202

    Характеристика механизма функционирования форм хозяйствования с иностранными инвестициями

    Get PDF
    Механизм функционирования предприятия с иностранными инвестициями неразрывно связан с понятиями "хозяйственный механизм" и "механизм функционирования предприятия". В экономической науке советского периода широко применялся термин "хозяйственный механизм". Рассматривался хозяйственный механизм отдельного предприятия, отрасли, экономики страны в целом, то есть рассматривался хозяйственный механизм экономических систем различного уровня

    Nucleobase-functionalized graphene nanoribbons for accurate high-speed DNA sequencing

    Get PDF
    We propose a water-immersed nucleobase-functionalized suspended graphene nanoribbon as an intrinsically selective device for nucleotide detection. The proposed sensing method combines Watson-Crick selective base pairing with graphene's capacity for converting anisotropic lattice strain to changes in an electrical current at the nanoscale. Using detailed atomistic molecular dynamics simulations, we study sensor operation at ambient conditions. We combine simulated data with theoretical arguments to estimate the levels of measurable electrical signal variation in response to strains and determine that the proposed sensing mechanism shows significant promise for realistic DNA sensing devices without the need for advanced data processing, or highly restrictive operational conditions

    Lipid-dependent conformational landscape of the ErbB2 growth factor receptor dimers

    Get PDF
    Altered lipid metabolism has been linked to cancer development and progression. Several roles have been attributed to the increased saturation and length of lipid acyl tails observed in tumors, but its effect on signaling receptors is still emerging. In this work, we have analyzed the lipid dependence of the ErbB2 growth factor receptor dimerization that plays an important role in the pathogenesis of breast cancer. We have performed coarse-grain ensemble molecular dynamics simulations to comprehensively sample the ErbB2 monomer-dimer association. Our results indicate a dynamic dimer state with a complex conformational landscape that is modulated with increasing lipid tail length. We resolve the native N-terminal "active" and C-terminal "inactive" conformations in all membrane compositions. However, the relative population of the N-terminal and C-terminal conformers is dependent on length of the saturated lipid tails. In short-tail membranes, additional non-specific dimers are observed which are reduced or absent in long-tailed bilayers. Our results indicate that the relative population as well as the structure of the dimer state is modulated by membrane composition. We have correlated these differences to local perturbations of the membrane around the receptor. Our work is an important step in characterizing ErbB dimers in healthy and diseased states and emphasize the importance of sampling lipid dynamics in understanding receptor association

    The Effect of Box Shape on the Dynamic Properties of Proteins Simulated under Periodic Boundary Conditions

    Get PDF
    Abstract: The effect of the box shape on the dynamic behavior of proteins simulated under periodic boundary conditions is evaluated. In particular, the influence of simulation boxes defined by the near-densest lattice packing (NDLP) in conjunction with rotational constraints is compared to that of standard box types without these constraints. Three different proteins of varying size, shape, and secondary structure content were examined in the study. The statistical significance of differences in RMSD, radius of gyration, solvent-accessible surface, number of hydrogen bonds, and secondary structure content between proteins, box types, and the application or not of rotational constraints has been assessed. Furthermore, the differences in the collective modes for each protein between different boxes and the application or not of rotational constraints have been examined. In total 105 simulations were performed, and the results compared using a three-way multivariate analysis of variance (MANOVA) for properties derived from the trajectories and a three-way univariate analysis of variance (ANOVA) for collective modes. It is shown that application of roto-translational constraints does not have a statistically significant effect on the results obtained from the different simulations. However, the choice of simulation box was found to have a small (5-10%), but statistically significant effect on the behavior of two of the three proteins included in the study
    corecore